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1 ALGORITHM AND FRAMEWORK
1.1 Description of the algorithm
The HyperPrior algorithm first initializes w with a uniform weighting 1 over the hyperedges. Note that w = 1 is a solution to the linear
system Hw = diag(Dv) by definition of Dv and thus, a valid solution to minimize

f,w
Φ(f, w). In the first step in each iteration, HyperPrior

fixes w and optimizes Φ(f, w = wt) with respect to f in the following optimization problem,

minimize
f

Ω(f, w = wt) + µ||f − y||2 (1)

The cost term Ψ(w = wt) is removed from Φ(f, w = wt) since it is a constant in the above optimization problem. Let L = I −
D
−1/2
v HWD−1

e HTD
−1/2
v . In the cost term, we can prove Ω(f, w = wt) = fTLf (see next section). L is positive semi-definite given

Ω(f, w = wt) ≥ 0 for any f , which also implies that Ω(f, w = wt) is convex in f . Therefore, we can simply take derivative with respect
to f to get the optimal solution f∗ = (1 − α)((1 − α)I + αL)−1y, where α = µ

1+µ
(Zhou et al., 2006). This is equivalent to solving the

linear system (1− α)((1− α)I + αL)f = y.
In the second step in each iteration, the HyperPrior algorithm fixes f = ft learned in the previous step to learn the optimal weighting of

hyperedges w by solving the quadratic programming problem:

minimize
w

Ω(f = ft, w) + ρΨ(w) (2)

subject to

w(e) ≥ 0 for ∀e ∈ E∑
e∈E h(v, e)w(e) = d(v) for ∀v ∈ V.

The cost µ||f − y||2 is removed from Φ(f, w = wt) since it is a constant in the above optimization problem, and Ω(f = ft, w) is a linear
function of w. Since Ψ(w) = wT (I −D−1/2

σ ∆D
−1/2
σ )w ≥ 0 for any w, I −D−1/2

σ ∆D
−1/2
σ is positive semi-definite, which implies that

Φ(f = ft, w) is convex in w. In both steps, the total cost Φ(f, w) is guaranteed to be reduced until there is only very small change. Thus,
our algorithm will finally stop at a small total cost. We implemented the HyperPrior algorithm in MATLAB and use ILOG/CPLEX package
(version 11.1) for quadratic programming.

∗equal contribution
†to whom correspondence should be addressed

c© Oxford University Press 2009. 1



Tian, Hwang and Kuang

HyperPrior(y,H,∆, µ, ρ)

1 t = 0, w0 = 1, f0 = y, c0 = +∞
2 do
3 t = t+ 1

4 Use network propagation to find optimal ft

ft = (1− α)(I − αD−1/2
v HWt−1D

−1
e HTD

−1/2
v )−1y

5 Use quadratic programming to find optimal wt
wt = argminw Ω(f = ft−1, w) + ρΨ(w)

subject to Hw = diag(Dv) and diag(W ) � 0

6 ct = Ω(ft, wt) + µ||ft − y||2 + ρΨ(wt)

7 while (ct−1 − ct > π)

8 return (ft, wt)

Fig. 1. The HyperPrior algorithm.

1.2 Proof of convexity
Let L = I − D−1/2

v HWD−1
e HTD

−1/2
v , where I is the identity matrix and W is the diagonal matrix with Wii = w(ei). We can show

Ω(f, w) = fTLf by

Ω(f, w) =
∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)

d(e)
(
f2(u)

d(u)
− f(u)f(v)√

d(u)d(v)
)

=
∑
e∈E

∑
u∈V

w(e)h(u, e)f2(u)

d(u)

∑
v∈V

h(v, e)

d(e)
−

∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)

d(e)

f(u)f(v)√
d(u)d(v)

=
∑
u∈V

f2(u)
∑
e∈E

w(e)h(u, e)

d(u)
−

∑
e∈E

∑
u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)√
d(u)d(v)d(e)

=
∑
u∈V

f2(u)−
∑
e∈E

∑
u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)√
d(u)d(v)d(e)

.

Step three in the above derivation shows that Ω(f, w) = fTLf if and only if
∑
e∈E

w(e)h(u,e)
d(u)

= 1. The constraints
∑
e∈E h(v, e)w(e) =

d(v) for ∀v ∈ V keep Dv unchanged during the optimization and thus make L always positive semi-definite.

1.3 Convergency of the algorithm
To check the convergence of the HyperPrior algorithm, we measured the value of the cost function in each iteration on the real microarray
gene expression datasets with selected 1,464 genes. The change of the cost function for different α and ρ parameters is shown in Fig. 2. It is
clear that the HyperPrior algorithm converges very fast. We also found that the value of f and w variables stay unchanged after the first 2 to
3 iterations.

In HyperPrior, we use w = 1 as the starting point. However, we also tried random starting points and they all converged to the same
solution as long as the initial constraints on w are satisfied. So empirically, the solution of HyperPrior is not affected by the starting point.

2 CLASSIFICATION RESULTS
2.1 Parameter tuning for ArrayCGH data
We tested HyperPrior on two arrayCGH datasets used by Rapaport et al. (2008). By following the same procedure from that paper, we
made three classification problems and performed a cross-validation by a leave-one-out (LOO) procedure for them. For the SVMs with linear
and RBF kernels, combinations of parameters C = {10−5, 10−4, . . . , 104, 105} and σ = {10−5, 10−4, . . . , 104, 105} were tested. For
the hypergraph-based algorithm and HyperPrior, parameters α = {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}, and ρ = {10−3, 10−2, . . . , 102, 103}
(for HyperPrior only) were tested. The L1-SVM and fused SVM were implemented using the source code provided by Rapaport et al.
(2008). For L1-SVM and fused SVM, combinations of parameters λ = {20, 21, . . . , 29, 210}, and µ = {2−10, 2−9, . . . , 29, 210} (for fused
SVM only) were tested.
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Fig. 2. Convergence of HyperPrior. This plot shows the decrease of the cost function after each iteration of HyperPrior.

σ/C 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
SVM (linear) 0.218 0.205 0.244 0.244 0.231 0.244 0.244 0.244 0.244

SVM (RBF)

10 0.218 0.218 0.218 0.218 0.218 0.218 0.231 0.231 0.231
100 0.218 0.218 0.218 0.218 0.218 0.205 0.244 0.244 0.231
1000 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.205 0.244

10000 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218
Table 1. SVMs on 78 training samples from van ’t Veer et al. dataset with 231 genes

C/percentage 0.2 0.4 0.6 0.8 1
0.0001 0.231 0.218 0.231 0.231 0.231
0.001 0.244 0.231 0.269 0.231 0.218
0.01 0.218 0.269 0.282 0.269 0.256
0.1 0.231 0.269 0.218 0.218 0.244
1 0.231 0.256 0.218 0.192 0.231
10 0.244 0.269 0.218 0.192 0.231

100 0.256 0.269 0.218 0.192 0.231
1000 0.256 0.269 0.218 0.192 0.231

10000 0.256 0.269 0.218 0.192 0.231
Table 2. Rapaport et al.’s method on 78 training samples from van ’t Veer et al. dataset with 231 genes

2.2 Gene expression data
We evaluated HyperPrior on two breast cancer gene expression datasets, the van ’t Veer et al. dataset with 97 samples (van ’t Veer et al.,
2002) and the van de Vijver et al. dataset with 295 samples (van de Vijver et al., 2002), using as a prior a large curated human protein-protein
interaction network with 57,235 interactions, which is integrated from yeast two-hybrid experiments, predicted interactions from orthology
and co-citatioin, and other literature reviews (Chuang et al., 2007). The classification task is to classify patients who developed metastasis or
were free of metastasis in five years after prognosis.

2.2.1 Parameter tuning for van ’t Veer et al. dataset As suggested by van ’t Veer et al. (2002), 231 genes are selected on a training set of
78 patients and the remaining 19 patients are held out as the test set in the van ’t Veer et al. dataset. To select the parameters used on test set,
we performed a leave-one-out cross-validation on 78 training samples and report the training error rate for each algorithm in Table 1,2,3 and
4.

2.2.2 5-fold cross-validation for van de Vijver et al. dataset In the experiments on van de Vijver et al. dataset, we used for classification
two subsets of hypothetical cancer susceptibility genes: 326 genes from Ingenuity and 1,464 genes from Cancer Genomics tool (http:
//cbio.mskcc.org/CancerGenes/Select.action). We randomly run 5-fold cross-validation multiple times on van de Vijver et
al. dataset and measure the average AUC. Note that within each experiment of a 5-fold cross-validation, another 4-fold cross-validation is
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λ1/λ2 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
0.0001 0.256 0.256 0.269 0.269 0.269 0.269 0.269 0.269 0.269
0.001 0.256 0.256 0.256 0.269 0.269 0.269 0.269 0.269 0.269
0.01 0.269 0.256 0.282 0.269 0.269 0.269 0.269 0.244 0.295
0.1 0.231 0.231 0.244 0.282 0.308 0.321 0.295 0.282 0.269
1 0.346 0.346 0.346 0.372 0.359 0.333 0.308 0.256 0.231

10 0.295 0.295 0.295 0.295 0.295 0.282 0.282 0.282 0.282
100 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564
1000 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564

10000 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564
Table 3. Li et al.’s method on 78 training samples from van ’t Veer et al. dataset with 231 genes

ρ/α 0.01 0.1 0.3 0.5 0.7 0.9 0.09
Hypergraph 0.218 0.231 0.231 0.231 0.244 0.269 0.231

HyperPrior (LP)

10 0.244 0.256 0.256 0.256 0.256 0.256 0.256
1 0.244 0.256 0.256 0.256 0.256 0.256 0.256

0.1 0.256 0.256 0.269 0.269 0.256 0.256 0.256
0.01 0.308 0.321 0.295 0.295 0.269 0.256 0.321

0.001 0.346 0.333 0.333 0.308 0.321 0.282 0.333
0.0001 0.462 0.474 0.487 0.397 0.333 0.321 0.462

HyperPrior (NB)

10 0.244 0.244 0.244 0.244 0.256 0.269 0.244
1 0.244 0.244 0.244 0.244 0.256 0.269 0.244

0.1 0.244 0.244 0.244 0.244 0.256 0.269 0.244
0.01 0.308 0.308 0.282 0.282 0.282 0.269 0.308

0.001 0.346 0.333 0.333 0.308 0.321 0.269 0.333
0.0001 0.462 0.462 0.487 0.385 0.333 0.321 0.462

Table 4. Hypergraph and HyperPrior on 78 training samples from van ’t Veer et al. dataset with 231 genes

AUC mean std vs. SVM (linear) vs. SVM (RBF) vs. Rapaport et al. vs. Li and Li vs. Hypergraph vs. HyperPrior-LP vs. HyperPrior-NB
SVM (linear) 0.676 0.061 1.000 0.403 0.297 0.001 0.037 1.031E-04 1.086E-04
SVM(RBF) 0.681 0.063 0.403 1.000 0.792 0.015 0.225 0.003 0.003

Rapaport et al. 0.682 0.072 0.297 0.792 1.000 0.041 0.392 0.011 0.012
Li and Li 0.695 0.071 0.001 0.015 0.041 1.000 0.170 0.737 0.749

Hypergraph 0.687 0.060 0.037 0.225 0.392 0.170 1.000 0.062 0.065
HyperPrior-LP 0.697 0.061 1.031E-04 0.003 0.011 0.737 0.062 1.000 0.985
HyperPrior-NB 0.697 0.060 1.086E-04 0.003 0.012 0.749 0.065 0.985 1.000

Table 5. All algorithms on van de Vijver et al. dataset with 326 genes

AUC mean std vs. SVM (linear) vs. SVM (RBF) vs. Rapaport et al. vs. Li and Li vs. Hypergraph vs. HyperPrior-LP vs. HyperPrior-NB
SVM (linear) 0.671 0.066 1.000 0.425 0.296 0.018 0.019 2.960E-04 3.232E-04
SVM(RBF) 0.667 0.060 0.425 1.000 0.763 0.093 0.001 4.282E-06 4.766E-06

Rapaport et al. 0.665 0.067 0.296 0.763 1.000 0.189 0.001 3.497E-06 3.876E-06
Li and Li 0.657 0.068 0.018 0.093 0.189 1.000 2.926E-06 3.326E-09 3.745E-09

Hypergraph 0.685 0.063 0.019 0.001 0.001 2.926E-06 1.000 0.187 0.196
HyperPrior-LP 0.692 0.062 2.960E-04 4.282E-06 3.497E-06 3.326E-09 0.187 1.000 0.978
HyperPrior-NB 0.692 0.062 3.232E-04 4.766E-06 3.876E-06 3.745E-09 0.196 0.978 1.000

Table 6. All algorithms on van de Vijver et al. dataset with 1,464 genes

used on the training set to determine the best parameters for HyperPrior and the baseline algorithms to test the held-out set. Table 5 and 6
list the cross-validation results of all algorithms on van de Vijver et al. dataset with 326 and 1,464 cancer genes. p-values from two-sample
t-test are also listed.
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3 FUNCTIONAL ANALYSIS OF DISCRIMINATIVE CHROMOSOMAL REGIONS
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(A) Bladder cancer (B) Melanoma cancer

Fig. 3. Discriminative regions of DNA amplification and deletion. The figures plot separately the weights of regions of “amplification state” and “deletion
state”, assigned by HyperPrior with the α and ρ parameters giving the best results in cross-validation for the grade classification on bladder tumor samples
and melanoma tumor samples. The spots are ordered by their locations on chromosomes and the corresponding weights are plotted in blue curves. Red lines
represent the chromosome separations.

For the two arrayCGH datasets, the weights of spots assigned by HyperPrior are plotted in Fig. 3. We analyze with Ingenuity (http:
//www.ingenuity.com/) the biological functions of the genes located in the highly weighted chromosome regions to check whether
the genes involve over-represented GO categories and biological pathways that are related to bladder cancer and melanoma cancer. We select
the chromosome regions associated with the top 20 highly weighted amplification states and the top 20 deletion states on both datasets. Inside
these chromosome regions, 130 genes are found in the amplification regions and 255 genes are found in the deletion regions of the bladder
cancer dataset, while on the melanoma cancer dataset, 205 genes are found in the amplification regions and 28 genes are found in the deletion
regions . Using these genes as input, Ingenuity identifies 6 and 10 enriched functions scoring a p-value less than 0.0005 on the bladder and
melanoma cancer datasets, respectively. The enriched functions on the bladder cancer dataset include post-translation modification, antigen
presentation and cellular movement, which are all consistent with those identified by Saban et al. (2007); Konstantinopoulos et al. (2007);
Smith et al. (2009). The enriched functions on the melanoma cancer dataset also include known gene functions related to cancer development
such as cell cycle, cellular growth and proliferation, cellular development, and cell morphology (Hanahan and Weinberg, 2000; Onken et al.,
2006).

(A) Bladder cancer (B) Melanoma cancer

Fig. 4. Enriched biological functions in discriminative chromosomal regions.

4 CANCER GENE RANKING
We ranked the 1,464 cancer genes on van de Vijver et al. dataset and compare the ranking of known breast cancer genes with the ranking by
correlation coefficients.

We also introduced some noise to the PPI network to make the degree of each node no less than one half of the maximum degree in the
network. The top 100 genes ranked by HyperPrior with two groups of parameters and with a PPI to which the noise is introduced are listed
in the following table:
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Known Gene Ranking
Disease HyperPrior (LP) HyperPrior (LP) CC
Gene α = 0.5, ρ = 1 α = 0.5, ρ = 0.1

TP53 1 1 1166
BRCA1 11 12 1285
KRAS2 15 19 1057
ESR1 17 16 122
HRAS 18 14 73

BARD1 56 62 350
ATM 60 59 1154
AKT1 70 79 737

TGFB1 107 112 628
CASP8 108 120 636
PTEN 129 137 708

SERPINE1 185 136 179
PPM1D 188 116 243
BRCA2 226 258 856
PIK3CA 450 421 127
STK11 588 588 1278

Table 7. The ranking of known breast cancer (OMIM#114480) susceptibility genes. We compared the ranking of the known cancer genes obtained by the
HyperPrior algorithm with the ranking calculated by Correlation Coefficients (CC). We set α = 0.5 and ρ = 1 and 0.1 to test HyperPrior algorithm.

α = 0.5, ρ = 1 α = 0.5, ρ = 0.1 α = 0.5, ρ = 1

with noise
1 TP53 TP53 TP53 35 MNAT1 ZNF145 MMP11 68 NCOA3 NCOR1 PPP2R5C
2 RB1 RB1 EGFR 36 JAK2 TNFRSF6 RPS13 69 CEBPA VAV1 RPL6
3 MADH3 MADH3 RB1 37 SNW1 ONECUT1 BPAG1 70 AKT1 SKP2 RNF6
4 MAPK3 MAPK3 MADH3 38 CDC2 PML P4HB 71 TRAF6 ABL1 PTHLH
5 EGFR EGFR CREBBP 39 NFKB1 INSR E2F1 72 SYK NCOA3 TYMS
6 CREBBP JUN JUN 40 PML CDC25A NESP55 73 BCL2 BCL2 CP
7 JUN CREBBP CTNNB1 41 CDK4 IL6ST PSMD7 74 PIN1 GAB1 HUMGT198A
8 RAF1 CTNNB1 MAP2K4 42 GTF2H1 CDC2 RPL4 75 NCOR1 PPP1CA FLJ20030
9 MADH2 RAF1 SLC2A5 43 CSK E2F1 RPL11 76 E2F1 PTK2B LRP6

10 CTNNB1 STAT1 SIL 44 HIF1A CSK PLOD3 77 PHB TRAF6 NUDT2
11 BRCA1 RASA1 SH3BGRL 45 IL6ST TRAF2 SKP2 78 BCL3 PIN1 ADRA2B
12 STAT1 BRCA1 SLC16A1 46 SNRPD2 MNAT1 KPNA2 79 ITGA6 AKT1 PSMD1
13 MDM2 MADH2 SELP 47 CASP3 CDK4 FGG 80 TBP CEBPA ERBB4
14 MDM2 HRAS BRCA1 48 FOXO1A GTF2H1 FANCA 81 DLG4 SYK GABARAP
15 KRAS2 YWHAZ SDHD 49 STAT5A CRK DKFZP564A063 82 PTK2B PSMD7 APPL
16 MAPK1 ESR1 SFRS3 50 G22P1 HIF1A G6PD 83 CDK5 BCR DGKQ
17 ESR1 PTK2 SDHB 51 SAM68 USP4 DLG2 84 GAB1 TBP INPPL1
18 HRAS MDM2 SDHC 52 CRKL FOXO1A DUSP9 85 JUNB FHL2
19 PTK2 KRAS2 LIF 53 FLNA SNRPD2 GLTSCR2 86 GTF2I BCL2 RPL22
20 SOS1 MDM2 EPHB2 54 ZNF145 STAT5A TGFBR3 87 CDC6 CDC6 BMP1
21 YWHAZ MAPK1 SFRP1 55 CRKL CPR2 88 BCL2 BCL3 FLT3
22 NRAS JAK2 SET 56 BARD1 HD M17S2 89 USP4 LCK ING3
23 ATF2 EEF1A1 MYBL2 57 TRAF2 CASP3 PP15 90 LCK CCNA2 RANBP9
24 EGF EGF EEF1A1 58 FLNA CASP2 91 LYN GTF2I CDC25C
25 RASA1 NRAS BIRC5 59 CBL ATM MSF 92 NCOA2 JUNB RASA1
26 HDAC1 SOS1 BUB1B 60 ATM G22P1 TGFBI 93 GADD45A PHB DOC-1R
27 CAV1 ATF2 CREBL2 61 VAV1 SAM68 JAK2 94 PPP1CA ITGA6 ZNF145
28 TNFRSF6 SNW1 IGBP1 62 CRK BARD1 CHEK1 95 HDAC2 DLG4 NDUFS8
29 CCNH CAV1 63 CDH1 PPGB 96 BCR CDK5 CCNE2
30 CDC25A NFKB1 CCNA2 64 EEF1A1 GADD45G CCNB2 97 CCNT1 PSMD1 DDEF1
31 ONECUT1 HDAC1 GNAS1 65 ABL1 GJA1 98 HTATIP LYN EXT1
32 INSR CCNH PKMYT1 66 HD CBL ZNF361 99 MAP3K7 NME1 SERPINE1
33 NR3C1 NR3C1 MCM7 67 GADD45G CDH1 PTPN13 100 NONO NCOA2 RPS10
34 CSNK2A1 CSNK2A1 PGR

Table 8. The top 100 genes ranked by HyperPrior.
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5 CANCER SUBNETWORKS

(A) TP53-subnetwork (B) BRCA1-subnetwork (C) AKT1-subnetwork (D) RB1-subnetwork

(E) STAT1-subnetwork (F) SMAD2-subnetwork (G) SOS1-subnetwork

Fig. 5. Seven interaction networks of the top 100 marker genes on van de Vijver et al. dataset. Known breast cancer causative genes such as TP53, ESR1 and
BRCA1 play a central role in the networks. Other known susceptibility genes such as v-akt murine thymoma viral oncogene homolog 1 (AKT1), retinoblastoma
1 (RB1), signal transducer and activator of transcription 1, 91kDa (STAT1), SMAD family member 2 (SMAD2), and son of sevenless homolog 1 (SOS1) also
tend to be hubs and interact with many other susceptibility genes in the networks. Note that we remove those marker genes that do not directly interact with
other known susceptibility genes.

6 ENRICHED FUNCTIONS
We also analyzed the biological functions of the biomarker genes from van de Vijver et al. dataset by Gene Ontology (GO) annotations and
pathway analysis with Ingenuity (version 5.5). We investigated whether the identified marker genes involve significantly over-represented
GO categories and biological pathways that are related with breast cancer. With the top 100 marker genes as input, Ingenuity identifies 17
enriched functions scoring a p-value less than 1.0e−9 on van de Vijver et al. dataset. Fig. 6 shows the enriched biological functions from van
de Vijver et al. dataset. All the 17 enriched functions of top 100 marker genes shows strong consistency with those identified by Hanahan and
Weinberg (2000) and Wang et al. (2005), indicating that these processes are significantly involved with the progression of cancer. Especially,
the most significant functions such as cell cycle (p-value = 4.03e − 47), cell death (p-value = 3.44e − 44) , gene expression (p-value =
2.43e − 43), and cellular growth and proliferation (p-value = 2.7e − 36) are well known to be functionally involved with metastasis and
development of breast cancer (Sotiriou et al., 2006; Wang et al., 2005; Chuang et al., 2007; van ’t Veer et al., 2002). Note that among the 17
functions, 11 functions are closely or exactly matched with the 21 functions discovered previously in Wang et al. (2005).
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