1 Simulation Experiments

1.1 Ezperiment Design

1.1.1 The First Experiment

In the first simulation experiment, we want to see how the parameter p influ-
ences the performance of HyperGene. In the optimization framework, p is a
parameter to control how much weight we put on the prior knowledge. If there
is no prior knowledge, it is just a restriction on the variance of weights for all
hyperedges. If p is large, the variance of weights for hyperedges will be small,
which means they will get similar weights in our algorithm. In this case, Hy-
perGene will perform in a similar way as what the original hypergraph-based
algorithm does, because the original hypergraph-based algorithm treats them
as the same important features. However, if p is small, HyperGene will make
the variance large so we can expect an improvement of classification perfor-
mance based on the new weights. In this case, we do believe some of the
features are much more important than others and we want to assign them
higher weights than average.

To verify these assumptions, we test it on randomly generated dataset. We
use the same number of samples (training and test) and features as the real
data to best keep the property of the original dataset. In HyperGene, fea-
tures are modeled as hyperedges in the hypergraph. In the simulation, we use
the following model to generate them. Each of the hyperedges is in one of
the two groups: The first group is the set of hyperedges which are useful in
classification of test samples, while the second group is the set of hyperedges
which are useless in helping making a prediction. We use mutual information
as the measurement of how useful a hyperedge is to predict the labels of test
samples. So when we generate hyperedges in the first group, we make the
mutual information of each hyperedge and the label be around some positive
constant. When we generate hyperedges in the second group, we don’t use the
label information and just generate hyperedges randomly, then each hyperedge
is independent to label thus their mutual information is approximately zero.
(Because we allow certain randomness in generating hyperedges, the mutual
information cannot be restricted to be a fix constant.)

1.1.2  The Second FExperiment

In the second experiment, we want to see how well HyperGene can use prior
knowledge to improve the performance. Instead of generating hyperedges in
the first group independently as in the first experiment, we use another model
to generate them in this experiment. First we generate a hyperedge with very



Table 1
Effect of prior knowledge on performance

SVM(linear) | SVM(rbf) | Hyper | HyperGene+No Prior | HyperGene+Priorl | HyperGene+Prior2
a=0.3 a=0.3,p=0.001 a=0."7,p=0.1 a=0.7p=0.1
0.6318 0.6391 0.7164 0.8217 0.9310 0.9237

HyperGene+No Prior: We use no prior knowledge.
HyperGene+Priorl: We use only correct prior knowledge.
HyperGene+Prior2: We also add false information to prior knowledge.

high mutual information to the label. Then we use 10 hyperedges to replace
this highly predictive hyperedge in such a way that the 10 hyperedges will
equally cover the samples which are covered by the highly predictive one.
(Then the highly predictive hyperedge is removed.) The generating of hyper-
edges in the second group is the same as in the first experiment.

Now we have the prior knowledge that the 10 hyperedges are actually from
one improtant hyperedge, so we want to assign similar weights to the 10
hyepredges. To construct a graph laplacian with such prior knowledge, first
we denote each feature as a vertex in a simple graph and the weight of each
edge is the pairwise relation of the corresponding two features. Then we con-
struct the graph laplacian to make the relations of the 10 hyperedges in the
first group much stronger than those of other pairs. In other words, we want
to make the 10 hyperedges a strongly connected clique in the graph. We also
add some noise to the graph laplacian to see how well HyperGene can deal
with the case that there is false information in the prior knowledge. To add
such noise, we randomly select 10 hyperedges in the second group and also
make them a strongly connected clique in the graph. Same as the first experi-
ment, we randomly generate 100 datasets and take the average ROC score for
each combination of parameters (a=0.3, 0.5, 0.7 and p = 0.001,0.01,0.1). We
report the best result and the corresponding parameters for each algorithm.

1.2 FExperiment Results

In the experiment, we tried different combinations of the two parameters «
and p in HyperGene. We also set another parameter percentage in the ex-
periment, which is used to control how many useful hyperedges (hyperedges
in the first group) we want to generate in the simulated dataset. Because in
real biomedical datasets, most of features (gene expression level, SNP, ...)
are noise, we set percentage to be very low to accord with this fact. To well
evaluate the performance of HyperGene, we also compared it with Support
Vector Machine. For each combination of the three parameters, we randomly
generate 100 datasets and report the average ROC scores for all algorithms.
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Fig. 1. Comparison of ROC score on sinjulated data. In the three figures, « is set
to 0.3, 0.5, 0.7, and p is set to 0.1, 0.01, 0.001, 0.0001 for each «a.



The standard deviation of HyperGene is slightly smaller than SVM. (Because
of lack of space, we don’t report stand deviation in the paper). From Fig 1, we
can see if the percentage of important feature is really small in the dataset,
using a smaller p will improve the performance of HyperGene. However, if the
number of important features is really large (In this experiment, it is 5% of
total number of features. The number will vary if we use a different mutual
information threshold to generate important features) that nearly all classi-
fication algorithm can have a very good performance (such as ROC>0.95),
the function of p is not important anymore. And in this case, we can observe
smaller rho starts to work worse than larger p. It is understandable because
if there are enough good features, it is a better choice to use a larger p to
restrict the variance of weights so more edges can have higher weights.

From Table 1, we can see although HyperGene already performances better
than SVM and original hypergraph-based algorithm without prior knowledge,
by introducing prior knowledge, HyperGene will further improve its perfor-
mance. Larger p works better this time because we have prior knowledge,
which indicates if we trust more on correct prior knowledge, we will get better
performance. Another thing worth noting is that even after we add some false
information to the prior knowledge, the performance of HyperGene doesn’t
change much, which shows HyperGene has some tolerance to noise. Even if
the prior knowledge is not totally correct, HyperGene can still use the infor-
mation provided to improve the performance.



