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Abstract

We introduce novel profile-based string kernels for use
with support vector machines (SVMs) for the problems of
protein classification and remote homology detection. These
kernels use probabilistic profiles, such as those produced by
the PSI-BLAST algorithm, to define position-dependent mu-
tation neighborhoods along protein sequences for inexact
matching ofk-length subsequences (“k-mers”) in the data.
By use of an efficient data structure, the kernels are fast to
compute once the profiles have been obtained. For example,
the time needed to run PSI-BLAST in order to build the pro-
files is significantly longer than both the kernel computa-
tion time and the SVM training time. We present remote ho-
mology detection experiments based on the SCOP database
where we show that profile-based string kernels used with
SVM classifiers strongly outperform all recently presented
supervised SVM methods. We also show how we can use the
learned SVM classifier to extract “discriminative sequence
motifs” – short regions of the original profile that con-
tribute almost all the weight of the SVM classification score
– and show that these discriminative motifs correspond to
meaningful structural features in the protein data. The use
of PSI-BLAST profiles can be seen as a semi-supervised
learning technique, since PSI-BLAST leverages unlabeled
data from a large sequence database to build more infor-
mative profiles. Recently presented “cluster kernels” give
general semi-supervised methods for improving SVM pro-
tein classification performance. We show that our profile
kernel results are comparable to cluster kernels while pro-
viding much better scalability to large datasets.
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1. Introduction

There has been much recent work on support vector ma-
chine (SVM) [4] approaches for the classification of pro-
tein sequences into functional and structural families and
for remote homology detection. Most of this research ef-
fort focuses on finding useful representations of protein se-
quence data for SVM training, either using explicit feature
vector representations orkernelfunctions – specialized se-
quence similarity functions that define an inner product in
an implicit feature space for the SVM optimization prob-
lem. Among the approaches that have been presented are
the Fisher-SVM method [12], which represents each protein
sequence as a vector of Fisher scores extracted from a pro-
file hidden Markov model (HMM) for a protein family, and
kernels that extend the Fisher kernel method [20]; families
of efficient string kernels [16, 15, 17], such as the mismatch
kernel, which are based on inexact-matching occurrences of
k-length subsequences (“k-mers”); the SVM-pairwise ap-
proach [18], which uses a feature vector of pairwise align-
ment scores between the input sequence and a set of training
sequences; the eMOTIF kernel [3], where the feature vec-
tor represents counts of occurrences of eMOTIF patterns
in the sequence; and feature vectors defined by structure-
based I-sites motifs [9]. These studies show that most of
the methods achieve comparable classification performance
on benchmark datasets, though there are significant differ-
ences in computational efficiency [15]. Interestingly, except
for the Fisher kernel method and its extensions, these rep-
resentations do not make intrinsic use of standard tools for
protein sequence analysis such as profiles [7] and profile
HMMs [14, 6, 2] – more commonly, they use scores based
on alignment or probabilistic models to construct a large set
of features. It is perhaps surprising that very generalk-mer
based string kernels perform as well as the Fisher kernel ap-
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proach, which makes well-motivated use of profile HMMs
[15].

In this paper, we define a natural extension of thek-mer
based string kernel framework to define kernels on protein
sequence profiles, such as those produced by PSI-BLAST
[1]. We choose to use profiles (rather than more complex
models) because they can be calculated by PSI-BLAST
in a tractable amount of time and because, once the pro-
files are obtained, we can efficiently compute string ker-
nel values using an appropriate data structure; in fact, the
time needed to compute the profile kernel matrix and the
SVM training time are significantly shorter than the time
needed by PSI-BLAST to compute profiles. From a ma-
chine learning point of view, use of PSI-BLAST profiles
can be viewed as asemi-supervisedapproach – that is, a
method that learns both from labeled training examples (se-
quences whose structural classification is known) and un-
labeled examples – an important consideration given the
relatively small amount of labeled data in this problem.
Through iterative heuristic alignment, PSI-BLAST lever-
ages unlabeled data from a large sequence database to ob-
tain a much richer profile representation of each sequence.
Intuitively, this richer data representation, made available to
an SVM through a profile-based kernel, should greatly im-
prove classification performance. Also, profile-based ker-
nels are a significantly different semi-supervised approach
than the Fisher-SVM method: with the Fisher kernel, un-
labeled data in the form of domain homologs are used to
train a model for a protein family of sequences in the train-
ing set, and then each sequence is represented by sufficient
statistics with respect to the learned model; in our approach,
unlabeled data is used to produce a profile model for each
training sequence independently, and then the kernel is de-
fined on the profiles. Our experimental results for the re-
mote homology detection task, using a benchmark based
on the SCOP database, show that our profile-based kernel
used with SVM classifiers strongly outperform all the recent
purely supervised SVM methods that we compared against.

Usually, SVM methods are treated as a “black box”
method, since in general it is difficult to interpret the SVM
classification rule. For the case of profile string kernels, we
show how we can use the trained SVM classifiers to de-
fine positional scores along the protein profiles that define
a smoothed contribution to the positive classification deci-
sion. We find that on average just over 10% of the profile
contributes 90% of the total score for positive training se-
quences, and thus we can extract distinguished regions that
we call “discriminative sequence motifs”. We give exam-
ples from our SCOP dataset to show that these discrimi-
native motifs correspond to meaningful structural features,
giving a proof of principle that the SVM-profile kernel ap-
proach allows us to extract useful sequence information.

Recently presented “cluster kernels” approaches [21]

give general semi-supervised methods for improving SVM
protein classification performance of a base kernel using
unlabeled data together with a similarity measure on in-
put examples. These cluster kernels were successfully ap-
plied to the protein classification problem using the mis-
match kernel as a base kernel for sequence data and BLAST
or PSI-BLAST to define similarity scores. However, for
large amounts of unlabeled data, these more general meth-
ods do not scale as well as our profile kernel approach. We
show that our profile kernel results are comparable to clus-
ter kernels while providing much better scalability to large
datasets.

2. The Profile Kernel

A key feature of the SVM optimization problem is that
it depends only on the inner products of the feature vectors
representing the input data, allowing us to usekernel tech-
niques. If we define a feature mapΦ from the input space of
protein sequences into a (possibly high-dimensional) vector
space called thefeature space, we obtain astring kernel–
that is, a kernel on sequence data – defined byK(x , y) =
〈Φ(x ),Φ(y)〉.

We first show how to define a feature mapping for pro-
tein sequence profiles – more precisely, we consider in-
put examples to be profilesP (x ), wherex is a sequence
x = x1x2 . . . xN from the alphabetΣ of amino acids
(|Σ| = 20, and the lengthN = |x | depends on the se-
quence), andP (x ) = {pi(a), a ∈ Σ}Ni=1 is a profile for
sequencex , with pi(a) denoting the emission probability of
amino acida in positioni and

∑
a∈Σ pi(a) = 1 for each po-

sition i. We then show how to efficiently and directly com-
pute the profile-based string kernel valuesK(P (x ), P (y))
without storing the feature vector representation.

2.1. Profile-defined Mapping to k-mer Feature
Space

Following the framework ofk-mer based string kernels
[16, 15, 17], our profile-based kernels will depend on a fea-
ture mapping to the|Σ|k-dimensional feature space indexed
by the set of all possiblek-length subsequences (“k-mers”)
of amino acids, wherek is a small positive integer.

Previous string kernels relied on defining an inexact-
matching neigborhood ofk-mers around eachk-length con-
tiguous subsequence in the input sequence. For example,
for the(k,m)-mismatch kernel, one defines the “mismatch
neighborhood” aroundk-merα = a1a2 . . . ak to be the set
of all k-length sequencesβ from Σ that differ fromα by
at mostm mismatches. For ak-merα, the mismatch fea-
ture map is defined as

ΦMismatch
(k,m) (α) = (φβ(α))β∈Σk



whereφβ(α) = 1 if β belongs toN(k,m)(α), andφβ(α) =
0 otherwise, and one extends additively to full-length se-
quencesx by summing the feature vectors for all thek-mers
in x :

ΦMismatch
(k,m) (x ) =

∑
k-mersα in x

ΦMismatch
(k,m) (α)

Thus each coordinate of the feature map is a count of the
inexact-matching occurrences of a particulark-mer, where
mismatching is used to define inexact matching.

For the profile kernel, we use the probabilistic profile
P (x ) to define a mutation neighborhood for eachk-length
segment in the input sequencex . Therefore, unlike previ-
ous string kernels, the inexact-matching neighborhoodk-
mers are not the same for all the data but instead vary from
sequence to sequence and within different regions of the
same sequence. For eachk-length contiguous subsequence
x [j+1 : j+k] = xj+1xj+2 . . . xj+k in x (0 ≤ j ≤ |x |−k),
thepositional mutation neighborhoodis defined by the cor-
responding segment of the profileP (x ):

M(k,σ)(P (x [j + 1 : j + k])) =

{β = b1b2 . . . bk : −
k∑
i=1

log pj+i(bi) < σ}.

Note that the emission probabilitiespj+i(b), i = 1 . . . k,
come from the profileP (x ) – for notational simplicity, we
do not explicitly indicate the dependence onx . Typically,
the profiles are estimated from close homologs found in a
large sequence database and may be too restrictive for our
purposes. Therefore, we smooth the estimates using back-
ground frequenciesq(b), b ∈ Σ, of amino acids in the train-
ing dataset via

p̃i(b) =
pi(b) + Cq(b)

1 + C
, i = 1 . . . |x |,

where C is a smoothing parameter, and we use the
smoothed emission probabilities̃pi(b) in place ofpi(b) in
defining the mutation neighborhoods.

We now define the profile feature mapping as

ΦProfile
(k,σ) (P (x )) =∑

j=0...|x |−k

(φβ(P (x [j + 1 : j + k])))β∈Σk

where the coordinateφβ(P (x [j + 1 : j + k])) = 1 if β be-
longs to the mutation neighborhoodM(k,σ)(P (x [j + 1 :
j + k])), and otherwise the coordinate is0.

The profile kernel is simply defined by the inner product
of feature vectors:

KProfile
(k,σ) (P (x ), P (y)) =
〈ΦProfile

(k,σ) (P (x )),ΦProfile
(k,σ) (P (y))〉.

2.2. Efficient Computation of the Kernel Matrix

Rather than storing sparse feature vectors in high-
dimensional k-mer space, we directly and efficiently
compute the kernel matrix using atrie data structure, sim-
ilar to the mismatch tree approach previously presented in
[16, 15, 17]. The difference for the profile kernels is that, in-
stead of matchingk-mers along the path to a leaf, we pass
k-length profiles down the tree branches.

Our new(k, σ)-profile trie is a rooted tree of depthk
where each internal node has|Σ| = 20 branches, each la-
beled with an amino acid (symbol fromΣ). A leaf node
still represents a fixedk-mer in our feature space, obtained
by concatenating the branch symbols along the path from
root to leaf. We perform a depth-first traversal of the data
structure and store, at a node of depthd, a set of point-
ers to all k-length profilesP (x[j + 1 : j + k]) from
the sample data set, whose current cumulative substitution
scores, up to depthd, are less than theσ threshold, that is,
−
∑d
i=1 log pj+i(bi) < σ, whereb1...bd is the prefix of the

current node. As we pass from a parent node at depthd to
a child node at depth d+1 along a branch with symbol la-
belb, we add for eachk-length profileP (x[j+ 1 : j+k]) a
score− log pj+d+1(b). Only those profile segments whose
cumulative substitution scores are still less thanσ will be
passed to the child node. At the leaf node, we update the
kernel by computing the contribution of active profile seg-
ments to the correspondingk-mer feature.

The complexity of computing each valueK(x , y) de-
pends on the size of the positional mutation neighborhood
of k-length profiles. With a typical choice ofσ, we empiri-
cally observe that the mutation neighborhood allows about
m = 1 or 2 mismatches relative to the originalk-mer for
the k-length profile in sequencex. Thus we can estimate
that the running time is bounded by that of(k,m)-mismatch
kernel, which isO(km+1|Σ|m(|x | + |y |)), with m ≤ 2.
See Section 3 for actual running times in benchmark exper-
iments.

2.3. Extraction of Discriminative Motifs

Using the PSI-BLAST sequence profiles and the learned
SVM weights, we can do a positional analysis to determine
which regions of the positive training sequence contribute
most to the classification score and thus extract “discrimi-
native” protein motif regions. For a training set of protein
sequence{xi}ni=1, the normal vector to the SVM decision
hyperplane is given by:

w =
n∑
i=1

yiciΦProfile
(k,σ) (P (xi)),

where theci are learned weights andyi ∈ {±1} are training
labels. For eachk-length profile segment of sequencex , its



contribution to the classification score is (up to a constant):

S(x [j + 1 : j + k]) =
〈φProfile

(k,σ) (P (x [j + 1 : j + k])),w〉.

We are mainly interested in discriminative motifs that con-
tribute to the positive decision of the classifier, so we define
a positional score for each positionj in a (positive) training
sequence by summing up positive contributions ofk-length
segments containing the position:

σ(x [j]) =
k∑
q=1

max(S(x [j − k + q : j − 1 + q]), 0).

We now sort these positional scores (for all posi-
tions in all positive training sequences) in decreasing or-
derσ(x [j1]) ≥ σ(x [j2]) ≥ . . . ≥ σ(x [jN ]), and we find the
first indexM such that cumulative sum

∑M
i=1 σ(x [ji]) is

greater than.9 times the total sum
∑M
i=1 σ(x [ji]). Thus po-

sitions j1, . . . jM constitute 90% of the positionally av-
eraged positive classification scores. We will see in the
Section 3.2 that these positions tend to fall in short seg-
ments of the protein sequence; we call these segments
“discriminative motif regions”.

3. Experiments

We test SVM classification performance of profile-based
string kernels against other recently presented SVM meth-
ods on a SCOP benchmark dataset. Methods are evaluated
on the ability to detect members of a target SCOP family
(positive test set) belonging to the same SCOP superfamily
as the positive training sequences; no members of the target
family are available during training. We use the same exper-
imental set-up that has been used in several previous studies
of remote homology detection algorithms [12, 18].

We use the same 54 target families and the same test
and training set splits as in the remote homology experi-
ments in [18]. The sequences are 7329 SCOP domains ob-
tained from version 1.59 of the database after purging with
astral.stanford.edu so that no pair of sequences share more
than 95% identity. Compared to [18], we reduce the num-
ber of available labeled training patterns by roughly a third.
Data set sequences that were neither in the training nor test
sets for experiments from [18] are considered to be addi-
tional unlabeled data, used for cluster kernel method we
compare against. All methods are evaluated using the re-
ceiver operating characteristic (ROC) score and the ROC-
50, which is the ROC score computed only up to the first 50
false positives [8].

We computed the profiles needed for our kernels by run-
ning PSI-BLAST [1] from the nonredundant database with
default search parameters and with background frequencies,

used for smoothing, estimated from the full dataset of 7329
SCOP domains. However, we limited the maximum num-
ber of iterative database searches to 2 iterations in order to
speed up PSI-BLAST computation. We used smoothing pa-

rameter corresponding to
1

1 + C
= .8 in the profile ker-

nel computation. The time needed to compute PSI-BLAST
profiles for all sequences was approximately 36 hours on
a 2.2 GHz Linux server (using at most 2 iterative database
searches); on the same CPU, the time required to compute
the 7329 x 7329 kernel matrix was 10 hours, and all 54
SVM experiments were completed in 30 minutes.

3.1. SCOP Experiments: Comparison with Super-
vised and Semi-Supervised Methods

We compared the results of profile kernels with three re-
cently presented SVM methods, using different represen-
tations of protein sequence data – the eMOTIF kernel, the
SVM-pairwise method, and the mismatch kernel – as well
as recent semi-supervised cluster kernel methods [21]. We
also compared the SVM methods to PSI-BLAST, used di-
rectly as a method for ranking test sequences relative to pos-
itive training sequence queries (see below).

We used the eMOTIF database extracted from eBlocks
and packaged with eBAS version 3.7 [10, 19], and we ob-
tained code for computing eMOTIF feature vectors from
the authors [3]. For the the SVM-pairwise method, we
used PSI-BLAST E-values as pairwise similarity scores
(see [21] for details on this representation). We note that
this use of PSI-BLAST with the SVM-pairwise method is
not fully-supervised, because the PSI-BLAST scores them-
selves make use of unlabeled data. For the mismatch ker-
nel, we use(k,m) = (5, 1) as presented in the original pa-
per [16].

We include results for PSI-BLAST, used directly as a
ranking method, in order to provide a baseline compari-
son with a widely used remote homology detection method
and also to demonstrate the added benefit of combining
PSI-BLAST with our SVM string kernel approach. The
PSI-BLAST algorithm, which iteratively builds up a prob-
abilistic profile for a query sequence by searching a large
database, also gives a faster approximation to the iterative
training method of profile HMMS. (We do not test profile
HMMs here due to computational expense, but in previ-
ous benchmark results for the remote homology problem,
SVM string kernel and Fisher kernel methods were both
found to outperform profile HMMs [16, 12].) Since PSI-
BLAST is not a family-based method, we report results by
averaging over queries: for each experiment, we use PSI-
BLAST with each of the positive training sequences as the
query and search against the non-redundant database in or-
der to produce a set of profiles, and then we use these pro-



files to rank the test set sequences by their PSI-BLAST E-
values. The ROC (ROC-50) score that we report for the ex-
periment is the average of all ROC (ROC-50) scores from
these rankings. (We note that a more sophisticated PSI-
BLAST training procedures that uses all positive training
sequences at once might be possible, but it is not clear how
best to do this given the diverse positive training set.) For
the PSI-BLAST ranking method, we use PSI-BLAST with
the default parameters, allowing a maximum of 10 iterative
searches against the nonredundant protein database in or-
der to build the profiles.

In our main experiments, we computed the profile ker-
nel with PSI-BLAST profiles built using at most 2 itera-
tive searches in order to reduce the PSI-BLAST computa-
tion cost. Therefore, the profiles used in our kernels were
somewhat less accurate than those used for the PSI-BLAST
ranking method. We tested profile kernels with(k, σ) =
(4, 6.0), (5, 7.5) and (6, 9.0); these parameter choices all
yield similar results. Figure 1 shows the comparison of
SVM performance of the(5, 7.5)-profile kernel against the
PSI-BLAST ranking method, the eMOTIF kernel, the mis-
match kernel, and the SVM-pairwise method using PSI-
BLAST across the 54 experiments in the benchmark. A
signed rank test with Bonferroni correction for multiple
comparisons concludes that the profile kernel significantly
outperforms the mismatch kernel (p-value 1.7e-06), SVM-
pairwise kernel (8.4e-04), eMOTIF kernel (2.2e-07), and
mean PSI-BLAST ranking (2.6e-08). Average ROC and
ROC-50 scores across the experiments for all methods are
reported in Table 1.

To show the effect of using more accurate PSI-BLAST
profiles, we also include in Table 1 profile kernel results
based on PSI-BLAST profiles that were trained for up to 5
search iterations. The results demonstrate that we can have
significant improvement in ROC and ROC-50 scores for the
profile kernel method by improving the profiles. However,
running PSI-BLAST for 5 iterations instead of 2 iterations
increased the PSI-BLAST computation time by an order of
magnitude. Therefore, in our subsequent analysis, we re-
fer only to the first set of SVM classifiers, which use pro-
files based on up to 2 PSI-BLAST iterations.

We note that the original authors of the SVM-pairwise
used Smith-Waterman scores (SW) for pairwise comparison
scores; however, on a similar benchmark with more training
data than the current dataset, results for SVM-pairwise with
SW scores were weaker than the PSI-BLAST results re-
ported here, and ROC performance was only slightly better
(ROC = 0.893, ROC-50 = 0.434). Thus the semi-supervised
PSI-BLAST scores do indeed give a richer and more ef-
fective representation for SVM-pairwise; however, using
PSI-BLAST profiles to define a profile-based string ker-
nel is clearly more effective than SVM-pairwise with PSI-
BLAST.

Our SCOP dataset is different from and larger than the
benchmark on which the eMOTIF kernel was originally
tested [3]. In cases where a superfamily has a common
eMOTIF pattern or set of patterns, the eMOTIF kernel
should achieve good specificity. We speculate that in our
54 experiments, fewer superfamilies are characterized by
common eMOTIF patterns and that accordingly the eMO-
TIF kernel achieves weaker performance.

We do not include a comparison against the Fisher ker-
nel method [12], again due to computational expense, but
based on previous comparisons, we expect performance to
be similar to that of the mismatch kernel [16].

Figure 1: Comparison of recent SVM-based homology detection
methods for the SCOP 1.59 benchmark dataset.The graph plots the to-
tal number of families for which a given method exceeds an ROC-50 score
threshold. Each series corresponds to one of the homology detection meth-
ods described in the text.

Finally, we also compared our profile kernel against re-
cently presented cluster kernels methods [21]. These meth-
ods use “clustering” of additional unlabeled sequence data
to improve the base representation. Here, sequences from
the original SCOP dataset of 7329 domains that are not
used in the training or test sets of any experiment pro-
vide the unlabeled data. For simplicity, we give results for
only one of the two novel cluster kernel methods from
[21], the neighborhood kernel. (Results for the bagged ker-
nel are very similar but more time-consuming to compute.)
The neighborhood kernel uses the(5, 1)-mismatch kernel
as the base kernel and uses PSI-BLAST to define “neigh-
borhood sets” Nbd(x ) around each input sequencex , con-
sisting of labeled or unlabeled sequencesx ′ with similar-
ity score tox below E-value threshold of .05, together with
x itself. Then the implicit feature vector isΦnbd(x ) =

1
|Nbd(x )|

∑
x ′∈Nbd(x) ΦMismatch(x ′).

We see from figure 2 that the profile kernel has similar



Kernel ROC ROC-50
eMOTIF 0.711 0.247

PSI-BLAST(mean) 0.7429 0.2925
Mismatch(5,1) 0.870 0.416

SVM-pairwise(PSI-BLAST) 0.866 0.533
Neighborhood 0.923 0.699

Profile(4,6.0)-2 iterations 0.939 0.700
Profile(5,7.5)-2 iterations 0.945 0.735
Profile(6,9.0)-2 iterations 0.952 0.731
Profile(4,6.0)-5 iterations 0.955 0.776
Profile(5,7.5)-5 iterations 0.959 0.782
Profile(6,9.0)-5 iterations 0.967 0.784

Table 1:Mean ROC and ROC-50 scores over 54 target families.

performance to the neighborhood kernel (the slight prefer-
ence to profile kernel is not significant by a signed rank test
with p-value threshold of 0.05). We note that our profile ker-
nel is making use of more unlabeled data than the neighbor-
hood kernel, since the neighborhoods are based on a smaller
unlabeled database. However, as we scale up, computing the
neighborhood kernel for extremely large neighborhood sets
of sequences becomes expensive (computation time scales
linearly with the size of the neighborhood). One can ran-
domly select sequences from the neighborhood, but then
one still has to devise an appropriate way of computing a
sample without storing many thousands of sequences. (The
bagged kernel from [21] has similar scalability issues as
the database gets large.) By comparison, the profile-based
string kernel approach achieves good SVM performance
and computational efficiency while only representing the
sequence profiles.
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Figure 2:Comparison of profile kernel (using 2 PSI-BLAST itera-
tions) with recent cluster kernel approaches on the SCOP 1.59 bench-
mark dataset.The graph plots ROC-50 scores of the profile kernel (y-axis)
versus the neighborhood cluster (x-axis), a recent cluster kernel method,
for the 54 experiments in the SCOP benchmark.

3.2. Motif Extraction from SVM Predictions

We next calculated positional contribution scores
σ(x [j]) for our trained SVM classifiers, as outlined in Sec-
tion 2.3, to analyze which parts of the positive training se-
quences were most important for positive classification.
Typically, we found peaky distributional plots ofσ(x [j])
along positive training sequences, as shown for one ex-
periment in Figure 3: the peaks in these plots correspond
to “discriminative motif regions”. From cumulative con-
tribution analysis, we found that on average across the 54
experiments, 10.4% of the positions in the positive train-
ing sequences gave a cumulative total of 90% of the SVM
classification score for these sequences.

We manually examined the motif candidates for positive
training sequence sets in 13 experiments (2 sets from all-α
class, 5 from all-β class, 5 fromα+β class, and 1 from small
proteins class) with high ROC scores. By comparing them
with PDB annotations, we tried to identify common func-
tional and structural characteristics captured by motif can-
didates for these superfamilies. We found results of four ex-
periments to be of particular interest. We describe two of
these experiments below; results for the other two experi-
ments are available on the supplementary website.

One interesting example came from the homology de-
tection experiment for PH domain-like protein superfam-
ily (SCOP 1.59 superfamily 2.55.1). Proteins in this su-
perfamily share a conserved fold made up of a beta-barrel
composed of two roughly perpendicular, anti-parallel beta-
sheets and a C-terminal alpha helix. Previous studies have
shown that PH domains bind to their inositol phosphate lig-
ands via a binding surface composed primarily of residues
from theβ1/β2, β3/β4, andβ6/β7 loops [11]. The mo-
tif candidates we extracted correspond well with the C-
terminal alpha helix and the ligand-binding region at the
β1/β2, β3/β4, andβ6/β7. In Figure 4, we show the mo-
tif regions for one member of this superfamily, mouse beta-
spectrin protein, together with structural and functional an-
notations.

A second interesting example was the homology de-
tection experiment for the scorpion toxin-like superfamily
(SCOP 1.59 superfamily 7.3.7). By examining the motif
candidates from all sequences in this superfamily, we find
a common motif region that forms a beta-hairpin with two
adjacent disulphides. Previous studies have found that this
hairpin structure might be structurally important in interact-
ing with membrane receptors and ionic channels for pro-
teins in this superfamily, and the disulphide bridges can
help to stabilize the toxin protein. Figure 5 gives an exam-
ple from this superfamily, the scorpion OSK1 toxin protein,
to demonstrate the structure of the motif candidate [13].
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Figure 3:Positional contribution analysis of SVM classification score
for SCOP superfamily 3.2.1 (target family 3.2.1.7).The plot shows the
the contribution of each position along the sequence, obtained by averag-
ing k-mer profile SVM scores for allk-mers containing the position, for
positive training sequences in the experiment.

3.3. Discriminative regions versus protein motif
databases

To analyze our discriminative motif candidates fur-
ther, we consider whether the discriminative regions that
we found coincide with known protein motifs from the
eMOTIF database [3] or structural motifs from the I-sites
library[5]. For a simple comparison, we compute the ex-
tent to which eMOTIF and I-sites motifs contribute to the
overall positive discriminative scores for positive train-
ing sequences. We calculate accumulated discriminative
scores falling into the sequence regions matched by any mo-
tif from the eMOTIF database or the I-sites database, and
then we compare it with the expected contribution based on
motif coverage, which is estimated by the ratio between to-
tal length of motif regions and the sequence length. We
also compute the ratio of the eMOTIF/I-sites contribu-
tion to the expected contribution.

Interestingly, we found that on average, the eMOTIF/I-
sites contribution to the discriminative score is slightly, but
not dramatically, higher than expected. We show this com-
parison in Table 2 for eMOTIF and Table 3 for I-sites,
giving results for different confidence thresholds using the
eBAS and I-sites software, respectively. We conclude that
our discriminative motif regions provide information that is
complementary or additional to eMOTIF or I-sites motifs in
many experiments.

Figure 4:Motif regions on the Mouse beta-spectrin protein that be-
longs to the PH domain-like protein superfamily.(a) PDB sequence an-
notation (PDB id 1btn) and SVM-extracted motif regions. (b) 3D struc-
ture of the mouse beta-spectrin showing the SVM-extracted motif regions
on the protein structure. The yellow regions are the motif regions; the
molecule is shown in pink and the ligand in green.

Figure 5:Motif regions on the scorpion OSK1 Toxin from the Scor-
pion toxin-like superfamily. (a) PDB sequence annotation (PDB id 1sco)
and SVM-extracted motif regions. (b) 3D of the OSK1 toxin showing the
SVM-extracted motif regions on the protein structure. The yellow regions
are the motif regions; the orange bars represent the disulphide bridges.



eBAS Average Average Average ratio
cutoff eMOTIF expected of eMOTIF

threshold contribution contribution over expected
-1 0.4694 0.4263 1.1120
-4 0.3079 0.2739 1.1241
-8 0.2502 0.2188 1.1469
-15 0.1739 0.1500 1.1525

Table 2:Comparison of eMOTIF motifs versus SVM discriminative
scores.

I-sites Average Average Average ratio
confidence I-sites expected of I-sites
threshold contribution contribution over expected

0.7 0.5419 0.4894 1.1197
0.8 0.3697 0.3354 1.0995
0.9 0.1656 0.1446 1.1038

Table 3: Comparison of I-sites motifs versus SVM discriminative
scores.

4. Discussion

We have presented a novel string kernel based on protein
sequence profiles, such as those produced by PSI-BLAST.
The profile kernel extends the framework ofk-mer based
string kernels but dramatically improves SVM classification
and remote homology detection over these earlier kernels.
In our SCOP benchmark experiments, the SVM-profile ker-
nel also outperformed other recently presented SVM ap-
proaches such as the eMOTIF kernel and SVM-pairwise
and gave far better performance than PSI-BLAST used di-
rectly as a ranking method. Furthermore, the profile kernel
is competitive with recent semi-supervised cluster kernels,
such as the neighborhood kernel, while achieving much bet-
ter scalability to large datasets. We note that the cluster ker-
nel approaches are general methods that can be used for a
variety of applications, while the profile kernel is special-
ized for protein sequence data; profiles are often computed
and stored for other kinds of protein sequence analysis, so
profile-based kernels are particularly convenient.

We also show how to compute positional scores along
profiles for the positive training sequences and thus ex-
tract discriminative sequence motifs. As a proof of prin-
ciple, we give examples from preliminary analysis where
these discriminative regions indeed map to important func-
tional and structural features of the corresponding super-
families. These discriminative motifs may be of use to struc-
tural biologists for improving comparative models. More-
over, we observed that motifs from known protein motif
libraries like eMOTIF and I-sites were only slightly over-
represented in our discriminative regions, suggesting that
discriminative motifs for structural categories provide infor-
mation that is complementary or supplementary to known
motif databases. Moreover, in cases where the protein clas-
sification to be learned is a functional category, such as en-

zymatic activity, the method could be used to find discrima-
tive sites associated with protein function.

One significant finding from the analysis of our method
was that on average across the remote homology experi-
ments, only about 10% of the positions in the positive train-
ing sequences gave a cumulative total of 90% of the SVM
classification score for these sequences. This result suggests
that the multiple alignment of protein domain sequences
from a superfamily – which would be used, for example,
in a superfamily-based profile HMM approach – might be
unnecessary for this problem, since the discriminative infor-
mation is concentrated in short subregions of the protein se-
quences. Our profile-based string kernel approach does im-
plicitly use heuristic alignment via PSI-BLAST, but this is
only to build a local profile model around each sequence,
not to build a model for all the positive sequences at once.
We find that local profile information, when combined with
an effective profile-based string kernel representation and a
powerful classification algorithm, allows us to implement a
new and compelling alternative approach to remote homol-
ogy detection.
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