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ABSTRACT
Remote homology detection and fold recognition are the

central problems in protein classification. In real applica-
tions, kernel algorithms that are both accurate and efficient
are required for classification of large databases. We ex-
plore a class of partial profile alignment kernels to be used
with support vector machines (SVMs) for remote homology
detection and fold recognition. While existing profile-based
kernels use the whole profiles to determine the similarity be-
tween pairs of proteins, the partial profile alignment kernels
are derived from part of the position specific scoring matri-
ces (PSSMs) in the profiles for alignment. Specifically, at
each position in the PSSM, only amino acids in the mutation
neighborhood of the corresponding amino acid in the origi-
nal protein sequence are considered for alignment to remove
noise and improve computing efficiency. Our experiments
on SCOP bench datasets show that the partial profile align-
ment kernels achieved overall better classification results for
both fold recognition and remote homology detection than
profile kernels and profile-alignment kernels. In addition,
our algorithm using only a fraction of the profiles saves the
cost of computing the kernels significantly, compared to the
full-profile alignment methods.

1. INTRODUCTION

In the post-genomic era, one important task is to annotate
new genes/proteins encoded by the genome of newly se-
quenced species. The most widely applied large-scale ap-
proach is to classify the proteins into their corresponding
protein families, superfamilies or folds defined by a taxon-
omy of protein structural classification. In protein classifi-
cation, homologous proteins within the same family can be
easily detected with less ambiguity using sequence align-
ment. However, the problem of detecting subtle sequence
similarity between proteins sharing remote evolutionary re-
lation or only similar folding patterns, is much more chal-
lenging. Such problems are called remote homology detec-
tion and fold recognition respectively.

Discriminative classification approaches using SVMs have
shown superior performance for remote homology detec-

tion and fold recognition [1, 2, 3, 4, 5, 6, 7]. At the heart
of SVM-based methods is the kernel, which is designed to
capture the subtle similarity between protein sequences. For
example, [1] derived a kernel from Fisher scores of HMM
models; and, in [2] proteins are represented by pairwise se-
quence alignment scores against a protein database, while
[3, 4, 6] built kernels from representations of proteins based
on k-mers, short length-k subsequences of amino acids. Saigo
et al. [5] proposed a convolution kernel to summarize the
alignment scores of all possible local sequence alignments
between two protein sequences. Rangwala and Karypis [7]
further explored the approach using profile-profile local align-
ment as a similarity function and then the kernel matrix is
made positive semi-definite by adding a small constant on
the diagonal.

2. PROFILE-BASED ALIGNMENT KERNELS

The PSI-BLAST profiles [8] of a protein sequence X of
length n are a n × 20 matrix, either in form of a position-
specific scoring matrix (PSSM) or a position-specific fre-
quency matrix (PSFM). The columns of PSSM and PSFM
are indexed by the alphabet of amino acids and each row
corresponds to a position in the protein sequence. PSSM
and PSFM contain the substitution scores and the frequen-
cies, respectively, of the amino acids at different positions
in the protein sequence. Each row of PSFM is normalized
to sum to 1. The PSI-BLAST profiles of a sequence X
are computed by aligning X with multiple sequences in the
database that have statistically significant sequence similar-
ities with X . Therefore, it contains more general evolution-
ary and structural information of the protein family that pro-
tein X belongs to, and thus, provides valuable information
for remote homology detection and fold recognition.

Rangwala and Karypis [7] used the profile-profile lo-
cal alignment derived from the scoring scheme proposed by
[9] to achieve improved classification results. Specifically,
the similarity score between the i-th position of protein X’s
profile and j-th position of protein Y ’s profile is



SX,Y (i, j) =
20∑

k=1

PSFMX(i, k)× PSSMY (j, k)

+
20∑

k=1

PSFMY (j, k)× PSSMX(i, k).

This similarity scoring scheme exploits the profile infor-
mation to capture the evolutionary sequence conservation
between proteins that are remotely related for better remote
homology detection. Kernels based on sequence alignment
can hardly compete with profile-based methods since re-
mote homologous protein sequences share too little simi-
larity to generate a good alignment. Clearly, profile-profile
alignment overcomes this problem by the fact that the pro-
files can be used to evaluate the evolutionary conservation
between two sequence positions.

3. PARTIAL PROFILE ALIGNMENT KERNELS

One observation of the profile-based alignment kernels is
that most amino acids have a small frequency close to 0 or
a negative substitution score at each position, which often
represents noises that should not be used in the evaluation
of alignments. Based on this observation, we assume that
keeping the amino acids in a certain mutation neighborhood
of the original one in the protein sequence are sufficient to
represent the evolutionary information of the class of pro-
teins that it belongs to. Specifically, we propose partial-
profile alignment kernels in which, at each position in the
PSSMs, only a mutation neighborhood of the amino acid at
that position in the protein sequence is used to compute the
similarity between proteins. We consider two different scor-
ing schemes for our partial-profile alignment algorithms:
unweighted and weighted.

In the unweighted case, the similarity score between the
i-th position of protein X’s profiles and the j-th position of
protein Y ’s profiles is given by

S
(k)
X,Y (i, j) =

∑
l∈N(X,i)

PSSMY (j, l)+
∑

l∈N(Y,j)

PSSMX(i, l)

where N(X, i) and N(Y, j) are mutation neighborhoods of
the amino acids at position i in X and at position j in Y , re-
spectively; PSSMX(i, l) and PSSMY (j, l) are the values
corresponding to the l-th amino acids at the i-th position of
PSSM of X and j-th position of PSSM of Y , respectively.
In the weighted case, the scoring function is

Sw
(k)
X,Y (i, j) =

∑
l∈N(X,i)

PSFMX(i, l).PSSMY (j, l)

+
∑

l∈N(Y,j)

PSFMY (j, l).PSSMX(i, l).

Fig. 1. Top-2 partial profile alignment (PSSM matrices are
tranposed for viewable reason)

The weighted score function above is the mutation neigh-
borhood truncated version of the score function used in SW-
PSSM. The mutation neighborhood at each position are de-
fined in three different ways, (i) the original amino acid
in the protein sequence; (ii) the top-k scored amino acids
in the PSSM; or (iii) the amino acids with scores in the
PSSM higher than some threshold. Figure 1 shows an ex-
ample of how the similarity score between position i of pro-
file X and position j of profile Y is computed with top-2
neighborhood. The top-2 scored amino acids at position
i in PSSMX are A and R, while the top-2 scored amino
acids in PSSMY at position j are K and V. The top-2 un-
weighted similarity score between the two positions is 3 +
(−2)+5+1 = 7. For weighted alignment, PSFMX(i, A),
PSFMX(i, R), PSFMY (j,K) and PSFMY (j, V ) are
used to weight corresponding PSSM values. When the mu-
tation neighborhood is the amino acid in the protein se-
quence, the alignment is a combination of two sequence-
to-profile alignments.

The similarity matrix between protein profiles is sym-
metric but not necessarily positive semi-definite. Therefore
it might not be a valid kernel according to Mercer’s con-
ditions. We employed the technique described in [5] and
[7] to subtract from the diagonal of the similarity matrix its
smallest negative eigenvalue. The resulting matrix is a valid
kernel and differs from the original matrix only on the diag-
onal.

4. EXPERIMENTS

4.1. Dataset and evaluation

Partial-profile alignment kernels are tested on a benchmark
dataset of 7329 domains from SCOP 1.59, in which no pair
of sequences share more than 95% identity. Sequence pro-
files are obtained by sequence alignment using PSI-BLAST
against nr database with e-value of 10−3. In case of remote



Table 1. Remote homology detection results.
Kernels ROC ROC-50 mRFP
SPK(3.0, 1.0) 0.985 0.864 0.0037
Top1-U-SW(3.0, 1.0) 0.979 0.873 0.0232
Top2-U-SW(3.0, 0.5) 0.985 0.863 0.0227
Top3-U-SW(3.0, 0.75) 0.985 0.851 0.0222
Top4-U-SW(3.0, 0.75) 0.966 0.779 0.0288
Top1-W-SW(3.0, 0.75) 0.978 0.871 0.0232
Top2-W-SW(3.0, 1.0) 0.983 0.889 0.0227
Top2-U-Conv(3.0, 1.0) 0.976 0.831 0.0268
Top2-W-Conv(3.0, 1.0) 0.980 0.875 0.0241
Thres1-U-SW(3.0, 1.0) 0.987 0.871 0.0241
Thres1-U-Conv(3.0, 0.75) 0.985 0.880 0.0244
profile-kernel(4, 4) 0.880 0.595 0.0793
profile-kernel(4, 6.0) 0.974 0.837 0.0288
profile-kernel(4, 8.0) 0.979 0.827 0.0253
profile-kernel(5.0, 7.5) 0.984 0.874 0.0230
profile-kernel(5, 10.0) 0.981 0.852 0.0244
profile-kernel(6, 9.0) 0.987 0.866 0.0228
SW-PSSM(3.0, 0.125, 0.0) 0.969 0.784 0.0279
SW-PSSM(3.0, 0.25, 0.0) 0.972 0.810 0.0259
SW-PSSM(3.0, 0.75, 1.5) 0.980 0.872 0.0041
SW-PSSM(3.0, 0.75, 2.0) 0.980 0.874 0.0225
SW-PSSM(3.0, 1.0, 2.0) 0.980 0.876 0.0040
SPK: Sequence-Profile Alignment Kernel; U:Unweighted; W:Weighted; Thres1:Score threshold = 1;

SW: Smith-Waterman; Conv: Convolution Kernel

homology detection, for each super-family, a SVM classifier
is trained to detect proteins belongs to the same superfamily
but not the same family. The same setting as in [6] is ap-
plied to 54 target families. A similar setting is applied for
fold recognition. We constructed the fold recognition data
by holding out a positive test superfamily with more than
5 sequences and the corresponding positive training set (se-
quences in other superfamilies under the same fold) with at
least 10 sequences which leaves us 102 superfamilies.

We tested our kernels against two other best perform-
ing profile-based kernels: profile kernels [6] and SW-PSSM
[7]. SVM training and classification are done with SPIDER
1.71 with SVMlight engine. To evaluate classification re-
sults, we use receiver operating characteristic (ROC) score,
ROC-50 score, which is the ROC score computed upto the
first 50 false positives [10], and median rate of false pos-
itives (mRFP) [1]. ROC-50 is considered to be more im-
portant than ROC, since in practice, only some top results
are viable to users. We also implemented SW-PSSM within
our alignment framework based on available source code on
the authors’ website to test the running time of our kernels
against SW-PSSM kernels.

4.2. Results

Partial profile kernels are defined by the type of mutation
neighborhood, the scoring scheme (weight/unweighted ) and
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Fig. 2. Fold recognition results. (A) Top2-U-SW(3.0,0.5)
v.s. profile-kernel(5,10.0). (B) Top2-U-SW(3.0,0.5) v.s.
SW-PSSM(3.0,10.0,2.0)

the alignment algorithm. We tested both Smith-Waterman
(SW) local alignment algorithm and the convolution ker-
nel algorithm proposed in [5] with a scaling factor β=0.5.
Our naming convention of partial profile kernels is neigh-
borhood type-scoring scheme-alignment algorithm(go, ge).
For example, Top2-W-SW(3.0, 0.75) means top-2 neighbor-
hood, weighted scoring and SW algorithm with go = 3.0
and ge = 0.75; Thres1-U-Conv(0.5, 3.0, 0.75) means mu-
tation neighborhood with a score threshold 1, unweighted
scoring and convolution kernel with β = 0.5, go = 3.0 and
ge = 0.75. When the mutation neighborhood is the amino
acid in the protein sequence, we only use unweighted scor-
ing scheme and SW algorithm, the kernels are denoted as
SPK, as the alignment is a combination of two sequence-
profile alignments. The gap opening cost (go) used in all
partial profile alignments is 3.0. Gap extension cost (ge)
values tested are 0.5, 0.75 and 1.

Table 1 shows the average ROC scores and ROC-50
scores over the 54 families achieved by the kernels for re-
mote homology detection. In this set of experiments, par-
tial profile kernels, profile kernels and SW-PSSM kernels
with the best choice of parameters give similar classifica-
tion performance with slight difference. Top2-W-SW ker-
nels achieve the best ROC-50 scores; profile-kernel(6,9.0)
gives the best ROC score, but Top2-W-SW and Top2-U-SW
give similar results. It is interesting that SPK kernels and
Top-1 kernels, while running significantly faster, achieve
comparable results against SW-PSSM.

Table 2 lists average ROC and ROC30 scores for fold
recognition over 102 superfamilies. Top2-U-SW kernels
show significant improvement on ROC-50 with 5.4% im-
provement over the best of profile-kernels and about 8%
better than the best of SW-PSSM kernels. Moreover, the im-
provement is consistent over different Top-k kernels. This
result suggests that top-ranked amino acids in the profiles
are most informative for fold recognition.

The scatter plots in figure 2 visualize experiment-wise
comparisons between Top2-U-SW and the best of profile-
kernels and SW-PSSMs respectively. Top2-U-SW beats the



Table 2. Fold recognition results.
Kernels ROC ROC-50 mRFP
SPK(3.0, 1.0) 0.945 0.648 0.0339
Top1-U-SW(3.0, 1.0) 0.958 0.677 0.0257
Top2-U-SW(3.0, 0.5) 0.961 0.717 0.0238
Top2-U-SW(3.0, 1.0) 0.960 0.712 0.0222
Top3-U-SW(3.0, 1.0) 0.958 0.688 0.0238
Top4-U-SW(3.0, 0.75) 0.948 0.647 0.0317
Top1-W-SW(3.0, 0.75) 0.957 0.671 0.0252
Top2-W-SW(3.0, 0.75) 0.959 0.685 0.0279
Top2-U-Conv(3.0, 1.0) 0.950 0.648 0.0351
Top2-W-Conv(3.0, 1.0) 0.953 0.652 0.0311
Thres1-U-SW(3.0, 1.0) 0.949 0.650 0.0384
Thres1-U-Conv(3.0, 0.75) 0.950 0.628 0.0348
profile-kernel(4, 4) 0.885 0.333 0.0824
profile-kernel(4, 6.0) 0.935 0.591 0.0375
profile-kernel(4, 8.0) 0.934 0.626 0.0366
profile-kernel(5.0, 7.5) 0.959 0.614 0.0284
profile-kernel(5, 10.0) 0.953 0.664 0.0230
profile-kernel(6, 9.0) 0.964 0.592 0.0275
SW-PSSM(3.0, 0.125, 0.0) 0.920 0.516 0.0614
SW-PSSM(3.0, 0.25, 0.0) 0.923 0.535 0.0585
SW-PSSM(3.0, 0.75, 1.5) 0.943 0.635 0.0431
SW-PSSM(3.0, 0.75, 2.0) 0.944 0.628 0.0421
SW-PSSM(3.0, 1.0, 2.0) 0.945 0.636 0.0400
SPK: Sequence-Profile Alignment Kernel; U:Unweighted; W:Weighted; Thres1:Score threshold = 1;

SW: Smith-Waterman; Conv: Convolution Kernel

other two in majority of the experiments and give compara-
ble results for most of the remaining.

We also measured and compared the running time of
partial profile alignment using SW algorithm to the full-
profile alignment used in SW-PSSM. Table 3 shows the av-
erage running time of the methods. The running time is
measure by actual CPU usage using Unix’s ps command.
At each step of Smith-Waterman algorithm, to compute the
similarity between the two positions, sequence-profile align-
ment is roughly 20 times faster than full-profile alignment.
However, due to the overhead of traversing through the dy-
namic programming table and other comparisons, the over-
all improvement is reduced to about 5.5 times faster but is
still significant.

Table 3. Average running time
Kernels Running time (minutes)
SPK 448
Top1-U-SW 834
Top2-U-SW 972
Top3-U-SW 1118
SW-PSSM 2552

5. CONCLUSION AND FUTURE WORK

We propose partial profile alignments for computing simi-
larity scores between proteins and derived kernels for SVM-
based remote homology detection and fold recognition. At
each position. Only a mutation neighborhood of the amino
acid in the protein sequence is considered for alignment.
This helps remove noises in PSI-BLAST profiles as well as
improve computing efficiency. The proposed kernels have
gained improvements especially in fold recognition. In the
future, we will use the proposed kernels to attack the harder
problem, multi-class protein classification.
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