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ABSTRACT

A challenge in using microarray gene expression profiles to
study breast cancer is to analyze the inconsistent discover-
ies made from independent microarray datasets. The in-
consistency is often related to the tuning of those sophis-
ticated strategies needed for taking into account the depen-
dence among the genes in the analysis as well as the differ-
ence between the platforms and the protocols used for gen-
erating the datasets. In this paper, we use a simple graph la-
beling algorithm which can capture the dependency among
the genes to study breast cancer microarry data. We per-
form a comparative study of breast cancer metastasis on two
datasets using the graph labeling algorithm and the standard
statistics of correlation coefficients. We show that our algo-
rithm predicts more consistent marker genes and pathways
enriched by the marker genes on the two datasets than the
correlation-coefficient statistics.

1. INTRODUCTION

Recently, many microarray gene expression profiles have
been made available for investigating the genetic associations
of various human diseases. Identification of genetic markers
of the diseases can provide useful information for both the
treatment and the etiology. It has been shown that the discov-
ered genetic markers of disease can potentially provide better
prognosis and diagnosis than the currently available clinical
measures for risk assessment in patients of various diseases
18141 17,15, 12]]. A number of disease markers have been discov-
ered through genome-wide expression profiles using various
computational methods such as Bayesian networks, support
vector machines and other statistical methods [8), 14} [7, 5]]. In
the study of breast cancer, [4] and [7] independently iden-
tified two sets of marker genes related to the metastasis of
breast cancer using large scale gene expression profiles pro-
duced in two different microarray experiments. However,
there are only three genes in common between the two sets of
the marker genes. Moreover, those two lists of marker genes
do not include any genes with known breast cancer muta-
tions such as P53, KRAS, HRAS, HER-2/neu and PIK3CA
[4,17,12]]. One possible explanation is that the two sets of gene
expression profiles use different microarray platforms, and
the difference introduced by the experiment techniques might
affect expression patterns used for the selection of marker
genes. Another possibility is when different training sets of
patients and different methods are used, achieving a stable
selection of marker genes becomes a major challenge due
to the intensive computational need for searching through
all possible combinations of the genes. In reality, the lists
of marker genes discovered from different gene expression

profiles on breast cancer are rarely overlapped, although the
genes are often involved in common pathways|[2} 3]].

In this paper, we apply a simple graph learning algo-
rithm, Network Propagation, which can capture the depen-
dance among the genes, to find a stable global optimal solu-
tion. We show that our algorithm can find more consistent
sets of marker genes which share in common several impor-
tant biological networks and pathways associated with breast
cancer using two heterogeneous breast cancer datasets.

2. METHODS

In this study, we formulate a graph labeling problem for as-
sociating marker genes with specific phenotypes in a disease
context [6]. We use labeled and unlabeled samples to clas-
sify the gene features into positive, negative or neutral classes
(Figure [TAA and [TB). The positively classified gene features
and negatively classified features are candidate marker genes.
In the bipartite graph, feature vertices represent up/down-
regulated genes; object vertices represent labeled and unla-
beled samples, connected to the feature vertices by weighted
edges. The object vertices are labeled with -1/+1 if the la-
bel is known, O otherwise. Every gene is represented by
two vertices, up-regulated and down-regulated; each sam-
ple will be connected to either the up-regulated vertex or the
down-regulated vertex with an edge weighted by the expres-
sion level (Figure [TIC). The global optimal solution of this
problem can be found by a network propagation algorithm
(Figure[ID). This learning algorithm can capture the interac-
tions between both samples and gene features by exploring
the global structure of the bipartite graph, based on a “clus-
ter assumption”: those samples in the same class tend to be
heavily connected to a common set of features; those features
that can characterize a class tend to be heavily connected to
the samples in the class. The semi-supervised learning prob-
lem is about how to learn the best labels on all the vertices,
given the bipartite graph and the known labels.

The network propagation utilizes phenotype labels to
achieve a global optimum for classifying “positive”, “neg-
ative” and “neutral” features along with test samples in one
semi-supervised learning procedure.The nature of our graph-
based learning algorithm captures dependency between all
genes simultaneously by exploring the graph structure, which
is essentially a non-linear method for selecting genes. The
network propagation propagates the label information of ev-
ery genes to its neighbors in the other gene sets. This propa-
gation process will leverage the activation values of the genes
in a densely connected neighborhood.
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Figure 1: Feature classification on a bipartite graph. This example shows a toy graph with 6 sample vertices and 4 feature vertices. All the edges are
assumed uniformly weighted. (A) Four samples are initially labeled according to their phenotype class; the other two and all the feature vertices are unknown.
(B) The two feature vertices strongly connected to the negative vertices are labeled negative, the one feature vertex strongly connected to the positive vertices
is labeled positive, and the one that is connected to both classes is assigned 0. The two unlabeled samples are also labeled according to their connections in the
graph. (C) The prediction scores (activation values) produced by Network Propagation with ¢ = 0.5 and 1000 iterations. All the nodes are correctly labeled;
note that the labels are relaxed into real numbers. (D) A bipartite graph with vertices of gene expressions; the edge weights are the absolute expression levels

of the genes.

3. EXPERIMENTS

We use the network propagation algorithm and correlation
coefficients to analyze two expression profiles of lymph-
node-negative primary breast cancer patients used in previ-
ous studies [4) [7]]. For our convenience, we use “Rosetta”
and "Wang” to refer to the two datasets respectively. The
two datasets are generated from primary breast tumor tissues
of different patient groups on different mircroarry platforms.

3.1 Data preparation

The Rosetta dataset hybridized to Agilent oligonucleotide
Hu25K microarrays. The microarray gene expression pro-
file measures the expression levels of 24,481 genes from 97
patients. We analyze all 24,481 gene expressions in our ex-
periments. The details for quantization and normalization
of scanned microarray images are described in [4]. The
Wang dataset hybridized to the Affymetrix oligonucleotide
microarray Ul33a GeneChip [7]. The expression of 22,283
transcripts are collected from total RNA of frozen samples
from 286 lymph-node-negative breast cancer patients. We
treat each probeset as a separate gene and normalize gene
expression values using median value for each gene. Then
we rescale them by log; ratio. In this analysis, we use all pa-
tients label information for identifying marker genes. Note
to remove any other artificial effects in our experiments, all
the genes in the two dataset are used as candidates of marker
genes without any pre-pruning. Thus, it is very difficult to get
overlapped predictions on the two datasets, given the number
of genes in the two datasets.

3.2 Identification of marker genes and over-represented
pathways

To identify gene markers, we use the network propagation al-
gorithm and the correlation-coefficient statistics. After run-
ning the network propagation, we list the top-ranked genes
by the absolute values of Z-scores calculated from the ac-
tivation values. For more details, please refer [6]. With
the standard statistic method, we calculate correlation co-
efficients using the label information. We then list top-
ranked genes based on the absolute value of correlation co-
efficients. Note that we use top-200 ranked genes for both
methods on the Rosetta and Wang’s datasets. To identify
over-representation of biological pathways, we use Ingenuity

software (version 5.5) with the sets of top-200 genes identi-
fied by the Network Propagation and the standard statistic
measurement using correlation coefficients from the Rosetta
and Wang’s datasets. The software automatically preprocess
the gene list to select genes eligible for pathway analysis.
In our gene lists, only 91 (Rosetta) and 144 (Wang) out of
200 selected genes using the Network Propagation and 85
(Rosetta) and 115 (Wang) out of 200 selected genes using the
standard statistic measurement are selected by the software
and then used as input to search for the biological networks
provided by the software. The biological networks identi-
fied by the software are assessed in the context of general
functional classes in Gene Ontology. We only investigate the
functions involving at least two selected genes for both the
Rosetta dataset and the Wang dataset and scoring a p-value
less than 0.01. If any of these two criteria are not satisfied, we
remove the function in our list. We also examine the enriched
biological networks using the selected gene markers identi-
fied by the software. The software uses our selected genes
as ”seed” to find relevant networks based on the knowledge
base in the system and then return the enriched biological
networks. Each network contains a set of genes which share
the same function and interact with each other.

3.3 Results of Network Propagation and the correlation-
coefficient statistics

We compare the marker genes identified by Network Propa-
gation and correlation-coefficient statistics from the Rosetta
and Wang’s datasets. We also analyze the enriched biologi-
cal networks and the over-represented pathways identified by
the software on the sets of marker genes.

3.3.1 Compare the marker genes

In the list of marker genes identified by Network Prop-
agation, many genes are related to tumor aggression and
metastasis, for example baculoviral IAP repeat-containing 5
(BIRCS5) and matrix metallopeptidase 9 (MMP9) are both
included [2]]. Network Propagation also detects one well
known breast cancer susceptibility gene, ER-a (ESR1) [4],
in the top-200 genes on the Rosetta dataset. Network
Propagation detects another well known breast cancer sus-
ceptibility genes in the top-200 genes on Wang’s dataset,
the phoshpoinositide-3-kinase catalytic subunit (PIK3CA).
Some mutations in PIK3CA are associated with constitutive



Table 1: Comparison of the enriched pathways identified by Network Propagation (NP) and the Correlation Coefficients (CC). The 17 over-
represented functions by the marker genes are analyzed. The significance value associated with each function is measured by p-value calculated using the
right-tailed Fisher Exact Test. We only list the functions which have p-value less than 0.01 (p < 0.01) measured as the enrichment by the top-200 genes using
the two methods on Rosetta and Wang datasets. A cross "X denotes that the funcntion is identified from the dataset the with corresponding method. Ten out
of the 17 functions are in common for all the cases. Five additional functions reported by Network Propagation and two additional functions are reported by

correlation-coefficient statistics.

Molecular and Cellular Function NRPosettéxC lev an%c Description
Cellular Assembly and Organization X X X X Subcellular components that are involved in cellular organization and
assembly of cellular substructures.
DNA Replication, Recombination, and Repair X X X X The replication, recombination and repair of DNA.
Cell Cycle X X X X Functions and stages of the cell cycle including cell division
Cell Death X X X X Cellular death and survival.
Cellular Movement X X X X Functions associated with movement and localization of cells.
Molecular Transport X X X X The intra- and extracellular movement of molecules, including small molecules, ions, DNA, RNA,
protein, lipids and carbohydrates.
Cellular Development X X X X The development and differentiation of cells.
Cellular Growth and Proliferation X X X X The growth and proliferation of cells.
Cell-to-Cell Signaling and Interation X X X X Functions that are involved in intercellular interactions such as binding, detachment,
communication, pheromone response, and stimulation.
Cell Morphology X X X X The morphology of cells.
Small Molecule Biochemistry X X Functions associated with small molecules
Post-Translational Modification X X The modification of proteins after translation
Lipid Metabolism X X Functions associated with the metabolism of lipids
Small Molecule Biochemistry X X Functions associated with small molecules
Cellular Function and Maintenance X X The normal cellular functions that maintain cellular homeostasis.
Cell Signaling X X Functions that are involved in intracellular signaling pathways.
Cellular Compromise X X The damage or degeneration of cells or any process that might compromise the function of the cell.

up-regulation of kinase activity in around 30% of breast can-
cers [2]]. Six genes, BIRCS, FGB, FGG, NMU, VGLLI and
PCSKI1, are overlapped between the twos lists of gene mark-
ers from the two datasets. BIRCS5, which plays a role associ-
ated with P53 signaling, is another well known breast cancer
susceptibility gene. FGB and FGG are members of FG and
react with Fibrin involved with cell death, one of the well
known functions associated with cancer disease. When we
compare top-300, 500 and 1000 gene, around 10% of genes
are overlapped. Note that in the previous work in [7, 4], only
three genes out of 70 genes are overlapped. In the list of
marker genes identified by Correlation Coefficients, we de-
tect one well known breast cancer susceptibility gene in the
top-200 genes on Wang’s dataset, v-KiOras2 Kirsetn rat sar-
coma viral oncogene homolog (KRAS) [4]. No important
genes associated breast cancer in the list of gene markers
from Rosetta are detected. There is only one gene overlapped
between the two lists from the two datasets. We also exam-
ine the enriched set of genes retrieved by the software. We
compare the enriched sets of genes with the 60 breast can-
cer susceptibility genes reported by [2]. In the enriched sets
of genes identified by Network Propagation, we detect 26
and 32 out of the 60 breast cancer susceptibility genes on
the Rosetta and Wang datasets respectively. The correlation-
coefficient statistics detect 20 and 34 genes from the Rosetta
and Wang datasets that are overlapped with 60 breast cancer
susceptibility genes.

3.3.2 Compare the enriched pathways

The functions of the mark genes and the biological networks
involving the genes are analyzed. Molecular and Cellular
functions are assigned to each marker gene. In Figure [2|
we plot the lists of identified functions. Since we have dif-
ferent numbers of genes identified by the two methods, the
functions are plotted based on the significance calculated by
p-values. Note that we plot the functions which involves
at least two genes on both Rosetta and Wang datasets and
scoring a p-value less than 0.01. The enriched functions ob-
tained by both methods show strong consistency with those

identified by [} [7]], indicating that these processes are sig-
nificantly involved with the progression of cancer. Although
we only have a small number of overlapped genes in the two
lists, almost all functions associated with marker genes are
matched from the two datasets. Among the 15 functions,
nine functions such as cellular growth and proliferation, cell
death, cell cycle and etc, are exactly or closely matched with
the 21 functions discovered previously in [7]. Among the
12 functions by the standard statistic method, nine functions
are overlapped with previous work [7]]. Although, the same
number of functions are overlapped with previous work [7]],
Network Propagation produces more a consistent set of en-
riched functions on the Rosetta and Wang’s datasets than
the correlation-coefficient statistics. This might indicate that
Network Propagation captures the dependence between the
genes of similar roles in those biological networks, and thus
finds more common pathways associated disease from het-
erogenous datasets. In TabldI] we show the full list of the
common functions identified by the two methods on the two
datasets.

4. DISCUSSION

In this paper, we apply the network propagation algorithm
and the standard statistic method using correlation coeffi-
cients to identify marker genes associated with breast can-
cer metastasis. We compare the marker genes and the bi-
ological pathways identified by each method from two het-
erogenous breast cancer datasets. Our results suggest that
one advantage of Network Propagation is that it can identify
more consistent marker genes from the heterogenous breast
cancer datasets with more enriched biological pathways in
common. One possible explanation is that the network prop-
agation algorithm is a simple strategy to consider the depen-
dence between genes and it can discover the set of marker
genes with similar functions or closely interacting with some
other important genes. In our future work, we plan to design
new algorithms which can incorporate prior knowledge from
known functions or pathways for more accurate marker gene
discovery.
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(C) Biological functions of top-200 selected genes by the Network Propagation and the Correlation Coefficients

Figure 2: Comparison of the identified biological functions enriched by the top-200 selected genes using Network Propagation and Correlation
Coefficients in the Rosetta and Wang’s datasets. The functions are sorted by p-value calculated using the right-tailed Fisher Exact Test. Note that we
only plot the functions which are involved with at least two genes on both datasets and have p-value less than 0.01. (A) The 15 over-represented functions
enriched by the top-200 selected genes by Network Propagation. ( B) The 12 over-represented functions enrighed by the top-200 selected genes by Correlation
Coefficients. (C) The 10 common over-represented functions identified by Network Propagation and Correlation Coefficients.
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