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Abstract—DNA copy number variations (CNVs) are prevalent
in all types of tumors. It is still a challenge to study how
CNVs play a role in driving tumorgenic mechanisms that are
either universal or specific in different cancer types. To address
the problem, we introduce a transfer learning framework to
discover common CNVs shared across different tumor types
as well as CNVs specific to each tumor type from genome-
wide CNV data measured by arrayCGH and SNP genotyping
array. The proposed model, namely Transfer Learning with
Fused Lasso (TLFL), detects latent CNV components from
multiple CNV datasets of different tumor types to distinguish
the CNVs that are common across the datasets and those that
are specific in each dataset. Both the common and type-specific
CNVs are detected as latent components in matrix factorization
coupled with fused lasso on adjacent CNV probe features. TLFL
considers the common latent components underlying the multiple
datasets to transfer knowledge across different tumor types. In
simulations and experiments on real cancer CNV datasets, TLFL
detected better latent components that can be used as features
to improve classification of patient samples in each individual
dataset compared with the model without the knowledge transfer.
In cross-dataset analysis on bladder cancer and cross-domain
analysis on breast cancer and ovarian cancer, TLFL also learned
latent CNV components that are both predictive of tumor stages
and correlate with known cancer genes.

I. INTRODUCTION

Normally there are two copies of each gene in the human
genome located on paired DNAs in a chromosome. Large scale
DNA alternations such as insertions or deletions could lead
to copy number gain or loss of the genes, which are called
DNA copy number variations (CNVs). CNVs have been found
extremely common in human cancer genome [1], [2] and it is
believed that CNVs play significant roles in cancer [3], [4].
New technologies such as array-based comparative genomic
hybridization (arrayCGH) [5], [6] and SNP genotyping arrays,
are now available to measure genome-wide CNVs in high res-
olution at a population scale for characterizing CNV patterns
in cancer samples [7]. Identification and systematic analysis of
CNVs can provide important insights into the cellular defects
that are cancer causative and suggest potential therapeutic
strategies.

Most previous computational research work focused on
developing models for identifying individual CNV events from
CNV samples of a single cancer type. [8] studied 17 cancer

types with at least 40 samples in each cancer type and reported
that about 80% somatic copy number alternations found in one
cancer type can also be found in pooled analysis excluding
that cancer type. The detected regions in the pooled analysis
were also found in other cancer types that are better localized.
These common and type-specific CNVs can potentially reveal
unknown cancer mechanisms in the light of cross-cancer-type
analysis. However, currently there is no unified mathematical
model to simultaneously detect the CNV events common or
specific to multiple cancer types from CNV array datasets.

In this paper, we propose a Transfer Learning with Fused
Lasso model (TLFL) to detect latent CNV components from
CNV datasets of multiple cancer types, in which each cancer
type can be regarded as one domain in transfer learning.
Common latent CNV components are used as a bridge to
transfer knowledge among different cancer domains along
with the domain-specific components for each cancer type to
explain the observed CNV datasets. To represent the pattern
of CNV events, fused lasso is applied on each latent CNV
component to preserve the sparsity and block structure. By
using alternating optimization to solve the TLFL model,
common latent features and domain specific features could
be detected from multiple domains. Compared with a baseline
method without knowledge transfer, TLFL is more robust and
identifies more accurate latent CNV components in simula-
tions and experiments on real arrayCGH CNV datasets and
SNP genotyping array datasets.

II. RELATED WORK

DNA CNVs tend to occur in continuous blocks of various
sizes and thus, the adjacent probe features are more likely to be
associated in the same CNV event. Previously, several models,
such as change-point detection [9], [10], hidden Markov
models [11], [12] and Gaussian models [13], [14] have been
applied to address the challenge. More recently, fused lasso
model [15] which introduces `1 norm constraint to encourage
sparse change points and fused CNV features, has been found
to be effective in discovering more interpretable CNV events
[16]. A fused lasso latent feature model, FLLat [17] was
proposed to take full advantage of any shared information
among samples. The model assumes each CNV sample is



a linear combination of a few latent CNV components. By
factorizing the arrayCGH data matrix into the product of
a coefficient matrix and a latent feature matrix, FLLat is
able to detect underlying CNV events and discern specific
relationships between samples. [18] proposed a latent fused-
lasso feature method to use prior knowledge to learn group
specific CNVs. Other multiple sample analysis methods which
are powerful to identify frequent individual CNVs [19], [20],
[21], [22], are neither designed to identify CNV components
nor capture the heterogeneity of samples. None of the previous
methods was specially designed as a unified mathematical
formulation to discover CNV events from multiple datasets
across different cancer types.

Transfer learning uses common knowledge or structures
among different domains to enhance multiple learning tasks
[23], [24]. Recently, a lot of research work on transfer learning
has been published for various learning problems such as Co-
Clustering based Classification [25], Label Propagation [26],
Collaborative Dual-PLSA [27] and Matrix Tri-Factorization
based Classification [28]. The paradigm of transfer learning
also fits the learning tasks of finding CNV components across
cancer types since datasets of the same or similar cancer
types presumably bear the same or similar pathogenic cause.
However, to the best of our knowledge, no transfer learning
method has been designed for latent fused-lasso component
discovery.

III. METHOD

Figure 1 is an outline of the TLFL model. In the Figure,
each of the three cancer CNV datasets is factorized into a
product of a coefficient matrix and k latent components. In
each set of the k components, τ components are shared across
the three datasets and the remain k−τ components are specific
to each dataset. The framework assumes that the CNV features
are measured on the same set of probe locations sampled
from a chromosome. Each component is learned with fused
lasso on the adjacent probe features to enforce a shape of step
function to mimic true CNV signals. In the following, we first
describe the optimization formulation of the model and then
introduce an alternating optimization algorithm to minimize
the cost function. Strategies for selecting hyper-parameters and
initialization are also suggested for the empirical practice of
the algorithm.

A. Transfer Learning Framework

The notations are given in Table I. Given δ datasets mea-
sured from the same m probe locations, each dataset Xd

contains nd samples from one cancer domain. The objective
is to recover k latent components [Û , Ud] to reconstruct each
dataset Xd with the minimal loss of information, where Ud
are k− τ latent components specific to dataset Xd and Û are
τ common components shared by all the datasets. Vd is the
corresponding coefficient matrix of [Û , Ud] for reconstructing
Xd. Specifically, the TLFL model assumes that each sample
in Xd can be represented as a linear combination of k latent

TABLE I
NOTATIONS

Notation Description
δ # of domains
nd # of samples in domain d ∈ [1, δ]
m # of CNV features
k total # of components in one domain
τ # of common components
Xd data matrix of domain d, size m× nd

Û matrix of common components,
size m× τ

Ud domain-specific components of
domain d, size m× (k − τ)

Vd coefficient matrix of domain d,
size k × nd

components as follows,

Xd = [Û , Ud]Vd.

To obtain the k latent components [Û , Ud] and coefficient
matrix Vd that best reconstruct Xd , the objective function
minimizes the reconstruction error of all the datasets by a sum
of the squared loss across the datasets,

δ∑
d=1

||Xd − [Û , Ud]Vd||2F .

To capture the spatial relation in the CNV probe features, each
latent component (a column in [Û , Ud]) is constrained by a
fused lasso. Specifically, the cost function for the common
components in Û is defined as,

g(Û , λC , γC)

=λC

τ∑
j=1

m∑
i=1

|Û(i,j)|+ γC

τ∑
j=1

m∑
l=2

|Û(l,j) − Û(l−1,j)|,
(1)

where λC and γC ∈ R are parameters to weight the penalties
and the lasso penalty is introduced to obtain sparse CNV
events in the components. Similarly, the cost function for each
domain-specific latent component is

g(Ud, λd, γd)

=λd

k−τ∑
j=1

m∑
i=1

|Ud(i,j)|+ γd

k−τ∑
j=1

m∑
l=2

|Ud(l,j) − Ud(l−1,j)|,
(2)

where λd and γd ∈ R are also parameters to weight the
penalties. Here, λC , γC , λd and γd for d = 1, 2, . . . , δ are
hyper-parameters to be tuned (see section III-C).

Given all the cost terms introduced above, the complete
objective function is defined as

L =

δ∑
d=1

(
1

2
||Xd − [Û , Ud]Vd||2F

+g(Ud, λd, γd)) + g(Û , λC , γC)

s.t.

Vd ≥ 0 and Vd(i,:)V Td(i,:) = 1 for i = 1, 2, . . . , k,

(3)
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Fig. 1. Outline of TLFL model. ArrayCGH or SNP genotyping array datasets from three domains are decomposed into coefficient matrices and matrices of k
latent components. The probe locations are identical in all three datasets (m features) while the number of samples (nA, nB and nC ) can be different. The
red latent components are τ common components shared in the three domains, and the remaining components in the same color of each dataset are k − τ
domain specific components. For better visualization, matrices in this figure are transpose from equations.

where Vd ≥ 0 denotes the condition that each element in Vd is
nonnegative and Vd(i,:) is the ith row of Vd. This cost function
combines the reconstruction errors with the lasso and fused
lasso terms weighted by λC , γC , λd and γd for d = 1, 2, . . . , δ.
The nonnegative constraints on Vd only allow positive coeffi-
cients to combine latent components which might contain both
amplification (positive) and deletion (negative) events. Each
row in every Vd is also normalized across the samples such
that the learned latent components are scaled to be comparable
with each other [17]. The normalization also encourages even
contributions from every latent component features to prevent
being dominated by a few. Those considerations are meant to
improve the interpretability of both the coefficients and the
components.

B. Alternating Optimization

The optimization problem in eqn 3 can be solved by
alternating updates to the variables Û , Ud and Vd iteratively.
Specifically, we solve subproblems on only one group of
variables by fixing the other two and alternate through the
three groups of variables in each iteration. The alternating
procedure is repeated until convergence. The detailed TLFL
algorithm is described in Algorithm 1. Below we outline the
solution to each subproblem to solve for Û , Ud and Vd,
respectively.

1) Updating coefficient matrix Vd: When Û and Ud are
fixed, eqn 3 is only a function on Vd simplified as

arg min
Vd

||Xd − [Û , Ud]Vd||2F

s.t.

Vd ≥ 0 and Vd(i,:)V Td(i,:) = 1 for i = 1, 2, . . . , k.

(4)

For each column Xd(:,j), we can solve a nonnegative least-
square problem to obtain a solution for Vd(:,j).

arg min
Vd(:,j)

||Xd(:,j) − [Û , Ud]Vd(:,j)||2F

s.t.

Vd(:,j) ≥ 0.

(5)

Then Vd can be normalized as Vd(i,:)V
T
d(i,:) = 1 for i =

1, 2, . . . , k.
2) Updating domain-specific components Ud: When Û and

Vd are fixed, eqn 3 is only a function on Ud simplified as

1

2
||Xd − [Û , Ud]Vd||2F + g(Ud, γd, λd)

=
1

2
||Ẋd − UdVd(τ+1:k,:)||2F + g(Ud, γd, λd),

(6)

where residue Ẋd is defined as

Ẋd ≡ Xd − ÛVd(1:τ,:).

This problem is equivalent to the general fused lasso problem,
which can be solved by the SLEP package [29].



Algorithm 1 TLFL
Input: {Xd}δd=1, k, τ , {γd}δd=1,{λd}δd=1, γC , λC
Output: Û , {Ud}δd=1, {Vd}δd=1

1: initialize Û , {Ud}δd=1

2: repeat
3: for d = 1, . . . , δ do
4: for j = 1, . . . , nd do
5: solve arg minVd(:,j)

||Xd(:,j) − [Û , Ud]Vd(:,j)||2F
6: s.t. Vd(:,j) ≥ 0 (eqn 5)
7: end for
8: normalize Vd s.t. Vd(i,:) × V Td(i,:) = 1 for i =

1, 2, . . . , k

9: Ẋd = Xd − ÛVd(1:τ,:)
10: solve arg minUd

( 1
2 ||Ẋd − UdVd(τ+1:k,:)||2F +

g(Ud, γd, λd)) (eqn 6)

11: end for
12: for d = 1, . . . , δ do
13: Ẍd = Xd − UdVd(τ+1:k,:)

14: end for
15: Xall = [Ẍ1, Ẍ2, . . . , Ẍδ]
16: Vall = [V1(1:τ,:), V2(1:τ,:), . . . , Vδ(1:τ,:)]

17: solve arg minÛ ( 1
2 ||Xall − ÛVall||2F + g(Û , γC , λC))

(eqn 7)

18: until Û , {Ud}δd=1, {Vd}δd=1 converge

3) Updating common components Û : When Ud and Vd are
fixed, eqn 3 is only a function on Û simplified as

δ∑
d=1

(
1

2
||Xd − [Û , Ud]Vd||2F ) + g(Û , γC , λC)

=
1

2
||Xall − ÛVall||2F + g(Û , γC , λC),

(7)

where we define

Ẍd ≡ Xd − UdVd(τ+1:k,:),

Xall ≡ [Ẍ1, Ẍ2, . . . , Ẍδ],

Vall ≡ [V1(1:τ,:), V2(1:τ,:), . . . , Vδ(1:τ,:)].

Similarly, this problem is also equivalent to the general fused
lasso problem, which can be solved by the SLEP package.

C. Initialization and Hyper-parameter Selection

Since eqn 3 is not convex, alternating updates in TLFL do
not guarantee a global optimal solution. The local optimal
solution heavily relies on proper initialization of Û and Ud.
We adopt a simple strategy to choose the initialization. We
use Principle Component Analysis (PCA) on pooled data
[X1, X2, . . . , Xδ] to select top τ components as the ini-
tialization of common components Û . For domain specific
components, PCA is applied on each domain data separately
to select the top k components for each domain. Then, the
top τ components of the k components of each domain that
are most similar to the initialization of Û are removed. The
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Fig. 2. Performance of latent component detection by TLFL, pool FLLat
(P FLLat) and split FLLat (S FLLat) section IV-A. The box-plots are
computed from 10 random experiments. D1, D2 and D3 denote the three
domains.

similarity is measured by the absolute correlation coefficients.
For each domain, the remaining k − τ components are used
as the initialization of domain specific components Ud.

The number of latent component k was chosen as the
number of principle components that can explain α ∈ [0, 1]
variation of the arrayCGH or SNP genotyping array datasets.
For multiple domains, the calculated k could vary among
the datasets. We simply choose the maximal as a global k
to explain at least α variance in each dataset. A user also
needs to select a parameter β ≡ τ/k to control the ratio
between common component number τ and total component
number k. For similar datasets such as datasets of the same
or closely related cancer types, β should be chosen larger
while for datasets from different cancer types, β should be
chosen smaller. Presumably, β could be determined by a user’s
perception of the similarity across the domains.

Parameters λC , γC , λd and γd are chosen by the same
Bayesian Information Criterion (BIC) introduced in [17]. BIC
controls both model complexity and training error to avoid
overfitting. For each domain, λd and γd are selected with
dataset Xd and k components. λC and γC are selected with
the combined dataset [X1, X2, . . . , Xδ] and τ + δ ∗ (k − τ)
components. Note that we could apply BIC to the complete
model in eqn 3 to jointly select λC , γC , λd and γd. However,
jointly choosing four parameters is not scalable even on
datasets of moderate size. Thus, we divided the estimation
into smaller BIC problems as described above.

IV. SIMULATION

In the section, we generated artificial datasets to test TLFL
model in three measurements: 1) performance of recovering
latent components; 2) performance of detecting hidden sample
group structures in coefficient matrix for classification and
clustering; and 3) convergence and robustness under differ-
ent noise levels and ratios between common and domain-
specific components. The synthetic datasets are constructed
as Xd = [Û , Ud] ∗ Vd + Ξ, where latent component matrix
[Û , Ud] and coefficient matrix Vd are either predefined or
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Fig. 3. Latent components detected by TLFL and FLLat are compared with the known true components. The rows represent the common components and the
components specific to the domains (D1, D2 and D3). The columns from left to right represent true components, components detected by TLFL, components
detected by pool FLLat, and components detected by split FLLat for D1, D2 and D3 with one column for each domain.

randomly generated, and the entries in Ξ are IID gaussian
noises. In all simulations, the hyper-parameters λ and γ are
selected as described in section III-C, and k and τ are assumed
known. In each component in [Û , Ud], 4 independent copy
number gain or loss events were assumed and randomly
located with magnitudes in [−1, 1] over 2000 probe features.
The components are not strictly orthogonal but the correlation
between any two components is required to be smaller than
0.3. The entries in Vd are random nonnegative values in [0, 1]
and normalized as Vd(i,:)V

T
d(i,:) = 1, i = 1, 2, . . . , k. We

compared TLFL with FLLat [17] to show the advantage of
transfer learning and discrimination of common and domain
specific components. In each experiment, TLFL is applied
jointly on three datasets. FLLat was applied on 1) a pooled
dataset of all the domain datasets (pool FLLat) and 2) each
domain dataset individually (split FLLat).

A. Recovering Latent CNV Components

Three synthetic datasets of sample size 300, 420 and 510
respectively were generated. In all the datasets, there are 7
latent components, 5 of which are common components Û
and 2 are domain-specific components Ud for each dataset,
Note that no structure is assumed in the coefficient matrices
Vd in this simulation. Gaussian noises Ξ ∼ (µ = 0, σ = 0.3)
were added. In this simulation, we focused on recovering
the known latent components used to generate the synthetic
datasets with added noise. The performance is measured by
the average Pearson correlation coefficients of each estimated
latent component with its corresponding known component.
Since FLLat allows negative coefficients, some latent compo-
nents were negated to obtain the best correlation coefficients
with the known components. With the components were fixed,

randomized coefficient matrices and noise were generated for
10 trials.

The performance of TLFL, split FLLat and pool FLLat for
recovering the known components is shown in Figure 2. TLFL
outperformed both split and pool FLLat in each domain under
the comparison across either common components or domain-
specific components. Interestingly, TLFL tends to identify
more consistent common components than the FLLat models
in the 10 repeats with smaller variance. Paired-sample t-test of
the component correlations by TLFL and FLLat for common
components, domain-specific components and all components
are all significant with the largest p − value = 4.46E − 04,
which indicates that TLFL significantly outperforms both split
and pool FLLat in detecting the known latent CNV compo-
nents. To illustrate the detect components, Figure 3 shows
the side-by-side comparison of each component detected by
FLTL, split FLLat or pool FLLat with the known component
from one trial. In this example, pool FLLat failed to detect the
third common component and split FLLat detected no signal
correlating with the second common component in all three
domains while TLFL captured all the true events accurately.
In the fifth common component, both FLLat methods failed
to separate the signal from the other components. Similar
advantages by TLFL are also seen in the comparison of
domain-specific components.

B. Sample Classification by Coefficient Matrices

Under the assumption that the latent components are under-
lying features describing tumor characteristics, the coefficient
matrices are presumably informative for patient classifica-
tion or clustering. For example, some latent features might
represent CNV abberations disrupting a gene pathway in a
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coefficient matrices learned by TLFL; and row 4: coefficient matrices learned
by split FLLat. Three classes of equal sizes are assumed in each domain.

certain tumor stage, and thus samples with a large coefficient
on the latent features are more likely to be associated with
that particular tumor stage. Therefore, in this simulation we
focused on using the learned coefficient matrices for sample
classification and clustering.

Similarly, three synthetic datasets of sample size 300, 420
and 510 respectively were generated with 5 common latent
components and 2 domain specific components in each do-
main. To create patient classes (clusters), we designed coef-
ficient matrices representing patterns of three classes (patient
subgroups) in each domain as shown in Figure 4. The true
coefficient matrices shown at row 2 in Figure 4 are constructed
by adding gaussian noise on the structured seed matrices at
row 1. The coefficient matrices were then multiplied with
components similarly generated as in section IV-A and added
with gaussian noises Ξ ∼ (µ = 0, σ = 0.3) to get the
synthetic datasets. With the latent components and structure
seeds fixed, we repeated the simulation procedure 10 times
under the gaussian noises.

The last two rows of matrices in Figure 4 show the coeffi-
cient matrices learned by TLFL and split FLLat in one trial. In
this visualization, it is clear that split FLLat made mistakes in
several places such as zero coefficient of the first component
in domain 1 and domain 2, and the fifth component on domain
3. The overall structure of the coefficient matrices in not as
distinguishable as those detected by TLFL. Since pool FLLat
learned a different number features (number of rows in Vd),
it is not directly comparable in Figure 4 .

To better measure the accuracy of the coefficients, classifica-
tion and clustering of samples were performed on the learned
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(b) K-means clustering

Fig. 5. Classification and clustering performance on coefficient matrices
learned by TLFL, pool FLLat and split FLLat. The comparisons are between
the methods on the three domains (D1, D2 and D3) in 10 random trials.

coefficient matrices. The leave-one-out cross-validation with
linear SVM classifier was performed for classification of the
samples. K-means clustering (K=3) was applied to cluster the
samples. For K-means clustering, the averages of 100 runs
are reported for each domain in each trial. Figure 5 shows
the comparison of the classification and clustering results by
TLFL and FLLat (pool and split) by scatter plots. In both
classification and clustering comparisons, almost all the cases
are well above the diagonal line, i.e. TLFL performed better
than FLLat by a large margin. In addition, TLFL also detected
better components in this simulation (results not shown).

C. Robustness and Convergence

To understand the robustness of TLFL and FLLat under
the presence of different noise level, we tested datasets with
varying amount of added noise in this simulation. Three
domain datasets of sizes 60, 75 and 90 respectively were
generated with 5 common components and 2 domain specific
components in each domain. The gaussian noises were drew
from (µ = 0, σ) with σ ranging from 0 to 1 with 0.1 step. To
test each noise level, the simulations were repeated 10 times.
Figure 6 shows that the performance of component detection
drops as the noise level increases for both TLFL and FLLat.
TLFL performs consistently better than both pool FLLat and
split FLLat when the noise level is reasonable (≤ 0.5) with
the benefit of transfer learning. TLFL and FLLat performs
similarly due to the extremely high noise level that almost
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Fig. 6. Components detection performance comparison between TLFL and
pool/split FLLat under different noise levels.
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Fig. 7. Effect of varying the number of common components. The errorbars
show TLFL performance under different τ with fixed datasets. Note that when
τ = 0, TLFL is equivalent to split FLLat and when τ = 8, TLFL is equivalent
to pool FLLat.

completely blurred the original signals. And at this noise level
the accuracy of the learn components is very low.

In most of the real cases, the best ratio of τ and k is
unknown. It is thus interesting to understand the performance
of TLFL when τ varies. Intuitively, τ is directly related to how
much knowledge to transfer across the different domains. The
more similar the domains, the larger τ desired. In the two
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Fig. 8. Convergence of TLFL for one run from section IV-A. After around
60 iteration, components and coefficient matrices are converged.

extremes, when τ = 0 TLFL is equivalent to split FLLat, and
when τ = k TLFL is equivalent to pool FLLat. We generated
synthetic datasets of sample size 150, 180 and 210, each
with 600 features and 8 latent components in each domain,
4 of which are common components. Similarly, we fixed the
components and generated coefficient matrices randomly with
gaussian noises Ξ ∼ (µ = 0, σ = 0.3) added in 10 trials for
each choice of τ ∈ [1, 2, . . . , 7]. The results of 10 trials is
shown in Figure 7. It is clear that when τ = 4 or 5, which is
close to the true τ , TLFL performs the best.

Figure 8 shows one example of convergency in running the
TLFL algorithm. TLFL convergences fast within lower tens of
iterations. Most of the simulations aforementioned converged
less within 100 times regardless of the sample sizes.

V. EXPERIMENTS ON CANCER DATASETS

We performed two experiments on real cancer CNV dataset-
s. The first experiment is a cross-dataset analysis on bladder
cancer to show that TLFL can utilize information from other
similar datasets to improve classification. The second experi-
ment is a cross-domain analysis on breast cancer and ovarian
cancer.

A. Analysis Across Bladder Cancer Datasets

TLFL, split FLLat and pool FLLat were tested on two
bladder cancer arrayCGH datasets: Blaveri05 [30] and Stan-
sky06 [31]. Both datasets contain urothelial carcinomas with
whole-genome tiling resolution arrayCGH and high density
expression profiling. There are 98 samples in Blaveri05 dataset
and 57 in Stansky06. Since the two datasets were not measured
by the same resolution, we interpolated the datasets in whole
genome to obtain CNV readings at the same probe positions
with a resolution of 500k bps per probe. All the samples from
the two arrayCGH datasets are provided with information on
tumor stage. In Blaveri05 dataset, the stages are Ta, T1, T2,
T3 and T4, and in Stransky06 dataset, the stages are Ta, T1a,
T1b, T2, T3a, T3b, T4a and T4b. We relabel the stages into
3 classes for each dataset: Blaveri05 with stages ({Ta}, {T1,
T2}, {T3, T4}) and Stransky05 with stages ({Ta},{T1a, T1b,
T2},{T3a, T3b, T4a, T4b}), ordered from less severe stage to
more advanced stage.

For each chromosome in the two datasets, the number of
latent components was chosen as the number of principle



components that could explain at least 80% variance of the
data. The parameter k for a certain chromosome was then
set as the larger number of principle components of the two
datasets. Since both datasets are on similar bladder carcino-
mas, we assume a large fraction of common components.
For each chromosome, we took the ratio of τ/k as 70%.
Parameters λ1, γ1, λ2, γ2, λC and γC were calculated by BIC
as described in section III-C. Table II reports the leave-one-
out SVM classification results of the three classes using the
coefficient matrices learned by TLFL, split FLLat and pool
FLLat. Among the tests on all 22 chromosomes, 11 tests of
Stransky06 and 10 tests of Blaveri05 present the best classifi-
cation results by TLFL than both FLLat methods (numbers
with color red) while on two chromosomes of Stransky06
dataset and 7 of Blaveri05 dataset, TLFL performed worse
classification than both FLLat methods (numbers with color
blue). Overall improvement is observed on both datasets for
the average classification results of the 22 chromosomes.

TABLE II
CLASSIFICATION OF BLADDER CANCER DATASETS.

Chr Stransky06 Blaveri05 Average

TLFL pool FLLat split FLLat TLFL pool FLLat split FLLat TLFL pool FLLat split FLLat

1 0.4795 0.4444 0.4386 0.5748 0.5714 0.5782 0.5272 0.5079 0.5084
2 0.4912 0.4737 0.4737 0.6361 0.6224 0.6361 0.5636 0.5481 0.5549
3 0.5906 0.5614 0.5029 0.6429 0.6429 0.6599 0.6168 0.6021 0.5814
4 0.6608 0.5848 0.6082 0.5544 0.5578 0.5544 0.6076 0.5713 0.5813
5 0.5439 0.5088 0.5263 0.6565 0.6565 0.6429 0.6002 0.5826 0.5846
6 0.5731 0.5556 0.5556 0.5884 0.6190 0.5918 0.5808 0.5873 0.5737
7 0.5906 0.6667 0.6374 0.6633 0.6395 0.6361 0.6270 0.6531 0.6367
8 0.6199 0.6316 0.6140 0.5952 0.5986 0.5714 0.6076 0.6151 0.5927
9 0.6140 0.6082 0.5146 0.6020 0.6224 0.6156 0.6080 0.6153 0.5651
10 0.6023 0.6316 0.5322 0.5850 0.5748 0.5748 0.5937 0.6032 0.5535
11 0.6140 0.6082 0.6023 0.6088 0.6395 0.6361 0.6114 0.6238 0.6192
12 0.5848 0.5556 0.5380 0.6020 0.5748 0.5748 0.5934 0.5652 0.5564
13 0.5439 0.5205 0.5673 0.5952 0.5816 0.5952 0.5695 0.5511 0.5812
14 0.5848 0.6433 0.5789 0.5680 0.5816 0.5918 0.5764 0.6125 0.5854
15 0.4737 0.4444 0.4795 0.6293 0.6190 0.5918 0.5515 0.5317 0.5357
16 0.6433 0.6491 0.6316 0.5782 0.6122 0.5884 0.6108 0.6307 0.6100
17 0.5205 0.6257 0.5322 0.5000 0.5034 0.5646 0.5102 0.5646 0.5484
18 0.5380 0.5322 0.4971 0.6224 0.6122 0.6054 0.5802 0.5722 0.5513
19 0.5322 0.5146 0.5789 0.5850 0.6122 0.6054 0.5586 0.5634 0.5922
20 0.6550 0.6667 0.6491 0.5986 0.6020 0.5918 0.6268 0.6344 0.6205
21 0.4561 0.4795 0.4561 0.5374 0.5136 0.5238 0.4968 0.4966 0.4900
22 0.5673 0.5380 0.4678 0.5782 0.5136 0.5340 0.5727 0.5258 0.5009

ave 0.5673 0.5657 0.5447 0.5955 0.5942 0.5938 0.5814 0.5799 0.5693

B. Analysis Across Cancer Domains

We applied TLFL method on two related cancer types,
breast cancer and ovarian cancer, to detect common CNV
patterns. The two CNV datasets were downloaded from TC-
GA data-portal1 SNP level 2 tangent data, generated from
Affymetrix Genome-Wide Human SNP Array 6.0 platform.
To label the patients for survival prediction, we chose breast
cancer patient samples that had a survival time less than 5
years as the positive group and longer than 8 years as the
negative group. Similarly, we chose the ovarian cancer patients
with survival time less 1 year as positive samples and longer
than 5 years as negative samples. With this criteria, 103 breast
cancer samples (56 positive and 47 negative) and 124 ovarian
cancer samples (46 positive and 78 negative) were selected. To
reduce the computational load, we sampled data with 150k bp
per probe resolution. Based on the genetic relevance of breast

1https://tcga-data.nci.nih.gov/.

cancer and ovarian cancer described in OMIM, we focused on
chromosomes 3, 8, 10, 13 and 17 in this analysis. The number
of components were chosen to explain between 60%-75% of
variance in each chromosome respectively. Since these are two
different but related cancer types, we took a smaller ratio of
τ/k as 60%.

Similarly, leave-one-out classification was performed on the
coefficient matrices learned by TLFL, pool FLLat and split
FLLat. The results are shown in Table III. TLFL performed
similar classification to FLLat on chromosome 3 and 8 but
better on the other chromosomes and overall average of both
the breast cancer and ovarian cancer datasets.

To detect more focal CNV events (short CNV regions),
we increased the hyper-parameter of common components
γC and λC by multiplying a factor 2.5 and reran TLFL on
both datasets. The common CNVs between breast cancer and
ovarian cancer detected by TLFL are shown in Figure 9.
Eighteen known cancer genes locate in these very focal CNV
regions. thirteen among the eighteen genes (except CCDC6,
FAM22A, ZMYM2 and SRSF2. GATA3 is found only related
with breast cancer) were reported to play a role in both
breast cancer and ovarian cancer as reported by details in
Table IV. For example, deletion or hyper-methylation of tumor
suppressor FHIT leads to high proliferation of both breast
cancer and ovarian cancer [32], [33], [34], [35]; and BRIP1
interacts with BRCA1 and its variants are candidates of breast
and ovarian cancer susceptibility [36]. The extensive literature
supports that those common CNVs might play an important
role in both breast and ovarian cancer.

TABLE III
CLASSIFICATION OF BREAST AND OVARIAN CANCER DATASETS.

Chr Breast cancer Ovarian cancer Average

TLFL pool FLLat split FLLat TLFL pool FLLat split FLLat TLFL pool FLLat split FLLat

3 0.5777 0.5922 0.5971 0.5363 0.6048 0.5040 0.5570 0.5985 0.5506
8 0.4466 0.4223 0.4612 0.4234 0.4153 0.5081 0.4350 0.4188 0.4846
10 0.6553 0.5194 0.5922 0.4758 0.3992 0.4516 0.5656 0.4593 0.5219
13 0.5194 0.4951 0.4612 0.5887 0.5887 0.5847 0.5541 0.5419 0.5229
17 0.5291 0.5049 0.5194 0.5766 0.5645 0.5323 0.5529 0.5347 0.5258

ave 0.5456 0.5068 0.5262 0.5202 0.5145 0.5161 0.5329 0.5107 0.5212

VI. CONCLUSIONS

Application of transfer learning to CNV analysis across
multiple cancer types is promising since CNVs are a hallmark
of cancer genomes. To the best of our knowledge, TLFL is
the first transfer learning method to utilize multiple cancer
domains for detecting common and domain-specific CNVs
as fused latent components. The transfer learning enables
sharing information in datasets of different cancer domains
to discover latent CNV features that can explain common
and domain-specific cancer characteristics and better classify
patient samples as shown in the experiments. In the recent
TCGA (The Cancer Genome Atlas) initiative, more and more
CNV datasets are becoming available for 21 types of cancer.
It is expected that transfer learning will play an important
role in the comparative analysis of the large patient cohorts

https://tcga-data.nci.nih.gov/


TABLE IV
CANCER GENES IN COMMON COMPONENTS

Gene Association with breast cancer and ovarian cancer Hyperlink to reference
MLH1 Loss of MLH1 plays a role in drug resistance in breast cancer; methylation of the

hMLH1 promoter is possibly related to cisplatin-resistance in ovarian cancer.
Mackay, H. J., et al.
Samimi, Goli, et al.
Strathdee, G., et al.

FHIT Deletion or hyper-methylation of tumor suppressor FHIT leads to high proliferation
of both breast cancer and ovarian cancer.

Fullwood, P., et al.
Dhillon, V.S., et al.
Campiglio, M., et al.
Zochbauer-Muller, S., et al.

TFRC TFRC together with ACTB are used for breast cancer quantification; TFRC expresses
differently between normal and poorly differentiated serous papillary adenocarcinoma
(PD-SPA) of the ovary.

Majidzadeh-A, K., et al.
Martoglio, A. M., et al.

BMPR1A BMPR1A highly expresses in breast cancer and ovarian cancer. Alarmo, E. L., et al.
Shepherd, T. G., et al.
Bowen, N. J., et al.

CCDC6 Lack of evidence
FAM22A Lack of evidence
FGFR2 Four SNPs of FGFR2 are confirmed highly associated with breast cancer and FGFR2

expresses increasingly in the rare homozygotes; combining FGFR2 inhibitors with
platinum-containing cytotoxic agents for the treatment of epithelial ovarian cancer
may yield increased anti-tumor activity.

Hunter, D. J., et al.
Meyer, K. B., et al.
Cole, C., et al.

GATA3 Low GATA3 expression is associated with higher histologic grade and short survival
time in breast cancer; No direct evidence to show relation between GATA3 with
ovarian cancer.

Mehra, R., et al.
Hoch, R. V., et al.

MYST4 MYST4 is up-regulated in ER-positive breast cancer cells and ovarian cancer cells. Kok, M., et al.
Vignati, S., et al.

PTEN PTEN may suppress tumor cell growth and regulate tumor cell invasion and metastasis
through interactions at focal adhesions in breast cancer; PTEN mutations are frequent
in endometrioid ovarian tumors.

Li, J., et al.
Obata, K., et al.

FAS FAS is a reliable prognostic marker to predict DFS and OS in patients with early
breast cancer; Decreased sensitivity to Fas-mediated apoptosis could contribute to
ovarian tumorigenesis and may play a role in ovarian tumorigenesis.

Alo, P. L., et al.
Baldwin, R. L., et al.
Meinhold-Heerlein, I., et al.

RB1 RB1 is most likely involved in the development of breast cancer; Two SNPs of RB1
showed significant association with ovarian cancer risk.

Spandidos, D. A., et al.
Song, H., et al.

ZMYM2 Lack of evidence
BRCA1 The 17q-linked BRCA1 gene is identified to have influences susceptibility to breast

and ovarian cancer.
Ford, D., et al.
Miki, Y., et al.

BRIP1 BRIP1 interacts with BRCA1 and its variants are candidates of breast and ovarian
cancer susceptibility.

Song, H., et al.

SEPT9 Increased SEPT9 v1 expression contributes to the malignant pathogenesis of some
breast tumors; Experiment shows consistent and specific overexpression of both
SEPT9 v1 and SEPT9 v4 transcripts in the epithelial component of ovarian tumors.

Gonzalez, M. E., et al.
Scott, M., et al.

SRSF2 Lack of evidence
YWHAE Expression level upregulated gene YWHAE together with other 5 genes show a

significant association to both disease-free and overall survival in breast cancer;
YWHAE is identified from the TOV-112D ovarian cancer cell line.

Cimino, D., et al.
Gagné J. P., et al.

to improve the current knowledge of cancer development and
progression in the light of both common and specific cancer
CNVs.
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